scispace - formally typeset
Search or ask a question
Author

G. B. Whitham

Bio: G. B. Whitham is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Wave propagation & Nonlinear system. The author has an hindex of 30, co-authored 38 publications receiving 25757 citations. Previous affiliations of G. B. Whitham include University of Manchester & Massachusetts Institute of Technology.

Papers
More filters
Book
01 Jan 1974
TL;DR: In this paper, a general overview of the nonlinear theory of water wave dynamics is presented, including the Wave Equation, the Wave Hierarchies, and the Variational Method of Wave Dispersion.
Abstract: Introduction and General Outline. HYPERBOLIC WAVES. Waves and First Order Equations. Specific Problems. Burger's Equation. Hyperbolic Systems. Gas Dynamics. The Wave Equation. Shock Dynamics. The Propagation of Weak Shocks. Wave Hierarchies. DISPERSIVE WAVES. Linear Dispersive Waves. Wave Patterns. Water Waves. Nonlinear Dispersion and the Variational Method. Group Velocities, Instability, and Higher Order Dispersion. Applications of the Nonlinear Theory. Exact Solutions: Interacting Solitary Waves. References. Index.

8,808 citations

Journal ArticleDOI
TL;DR: In this paper, a reference record was created on 2005-11-18, modified on 2016-08-08 and used for the purpose of ondes ; chocs ; onde de : choc reference record.
Abstract: Keywords: ondes ; chocs ; onde de : choc Reference Record created on 2005-11-18, modified on 2016-08-08

4,774 citations

Journal ArticleDOI
TL;DR: The theory of kinematic waves is applied to the problem of estimating how a ‘hump’, or region of increased concentration, will move along a crowded main road, and is applicable principally to traffic behaviour over a long stretch of road.
Abstract: This paper uses the method of kinematic waves, developed in part I, but may be read independently. A functional relationship between flow and concentration for traffic on crowded arterial roads has been postulated for some time, and has experimental backing (§2). From this a theory of the propagation of changes in traffic distribution along these roads may be deduced (§§2, 3). The theory is applied (§4) to the problem of estimating how a ‘hump’, or region of increased concentration, will move along a crowded main road. It is suggested that it will move slightly slower than the mean vehicle speed, and that vehicles passing through it will have to reduce speed rather suddenly (at a ‘shock wave’) on entering it, but can increase speed again only very gradually as they leave it. The hump gradually spreads out along the road, and the time scale of this process is estimated. The behaviour of such a hump on entering a bottleneck, which is too narrow to admit the increased flow, is studied (§5), and methods are obtained for estimating the extent and duration of the resulting hold-up. The theory is applicable principally to traffic behaviour over a long stretch of road, but the paper concludes (§6) with a discussion of its relevance to problems of flow near junctions, including a discussion of the starting flow at a controlled junction. In the introductory sections 1 and 2, we have included some elementary material on the quantitative study of traffic flow for the benefit of scientific readers unfamiliar with the subject.

3,911 citations

Journal ArticleDOI
TL;DR: In this article, the theory of a distinctive type of wave motion, which arises in any one-dimensional flow problem when there is an approximate functional relation at each point between the flow q and concentration k (quantity passing a given point in unit time) and q remains constant on each kinematic wave.
Abstract: In this paper and in part II, we give the theory of a distinctive type of wave motion, which arises in any one-dimensional flow problem when there is an approximate functional relation at each point between the flow q (quantity passing a given point in unit time) and concentration k (quantity per unit distance). The wave property then follows directly from the equation of continuity satisfied by q and k. In view of this, these waves are described as 'kinematic', as distinct from the classical wave motions, which depend also on Newton's second law of motion and are therefore called 'dynamic'. Kinematic waves travel with the velocity $\partial $q/$\partial $k, and the flow q remains constant on each kinematic wave. Since the velocity of propagation of each wave depends upon the value of q carried by it, successive waves may coalesce to form 'kinematic shock waves'. From the point of view of kinematic wave theory, there is a discontinuous increase in q at a shock, but in reality a shock wave is a relatively narrow region in which (owing to the rapid increase of q) terms neglected by the flow-concentration relation become important. The general properties of kinematic waves and shock waves are discussed in detail in section 1. One example included in section 1 is the interpretation of the group-velocity phenomenon in a dispersive medium as a particular case of the kinematic wave phenomenon. The remainder of part I is devoted to a detailed treatment of flood movement in long rivers, a problem in which kinematic waves play the leading role although dynamic waves (in this case, the long gravity waves) also appear. First (section 2), we consider the variety of factors which can influence the approximate flow-concentration relation, and survey the various formulae which have been used in attempts to describe it. Then follows a more mathematical section (section 3) in which the role of the dynamic waves is clarified. From the full equations of motion for an idealized problem it is shown that at the 'Froude numbers' appropriate to flood waves, the dynamic waves are rapidly attenuated and the main disturbance is carried downstream by the kinematic waves; some account is then given of the behaviour of the flow at higher Froude numbers. Also in section 3, the full equations of motion are used to investigate the structure of the kinematic shock; for this problem, the shock is the 'monoclinal flood wave' which is well known in the literature of this subject. The final sections (section section 4 and 5) contain the application of the theory of kinematic waves to the determination of flood movement. In section 4 it is shown how the waves (including shock waves) travelling downstream from an observation point may be deduced from a knowledge of the variation with time of the flow at the observation point; this section then concludes with a brief account of the effect on the waves of tributaries and run-off. In section 5, the modifications (similar to diffusion effects) which arise due to the slight dependence of the flow-concentration curve on the rate of change of flow or concentration, are described and methods for their inclusion in the theory are given.

1,336 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new method for analysing nonlinear and nonstationary data has been developed, which is the key part of the method is the empirical mode decomposition method with which any complicated data set can be decoded.
Abstract: A new method for analysing nonlinear and non-stationary data has been developed. The key part of the method is the empirical mode decomposition method with which any complicated data set can be dec...

18,956 citations

Journal Article
TL;DR: In this paper, a functional relationship between flow and concentration for traffic on crowded arterial roads has been postulated for some time, and has experimental backing, from which a theory of the propagation of changes in traffic distribution along these roads may be deduced.
Abstract: This paper uses the method of kinematic waves, developed in part I, but may be read independently. A functional relationship between flow and concentration for traffic on crowded arterial roads has been postulated for some time, and has experimental backing (§2). From this a theory of the propagation of changes in traffic distribution along these roads may be deduced (§§2, 3). The theory is applied (§4) to the problem of estimating how a ‘hump’, or region of increased concentration, will move along a crowded main road. It is suggested that it will move slightly slower than the mean vehicle speed, and that vehicles passing through it will have to reduce speed rather suddenly (at a ‘shock wave’) on entering it, but can increase speed again only very gradually as they leave it. The hump gradually spreads out along the road, and the time scale of this process is estimated. The behaviour of such a hump on entering a bottleneck, which is too narrow to admit the increased flow, is studied (§5), and methods are obtained for estimating the extent and duration of the resulting hold-up. The theory is applicable principally to traffic behaviour over a long stretch of road, but the paper concludes (§6) with a discussion of its relevance to problems of flow near junctions, including a discussion of the starting flow at a controlled junction. In the introductory sections 1 and 2, we have included some elementary material on the quantitative study of traffic flow for the benefit of scientific readers unfamiliar with the subject.

3,983 citations

Journal ArticleDOI
TL;DR: The theory of kinematic waves is applied to the problem of estimating how a ‘hump’, or region of increased concentration, will move along a crowded main road, and is applicable principally to traffic behaviour over a long stretch of road.
Abstract: This paper uses the method of kinematic waves, developed in part I, but may be read independently. A functional relationship between flow and concentration for traffic on crowded arterial roads has been postulated for some time, and has experimental backing (§2). From this a theory of the propagation of changes in traffic distribution along these roads may be deduced (§§2, 3). The theory is applied (§4) to the problem of estimating how a ‘hump’, or region of increased concentration, will move along a crowded main road. It is suggested that it will move slightly slower than the mean vehicle speed, and that vehicles passing through it will have to reduce speed rather suddenly (at a ‘shock wave’) on entering it, but can increase speed again only very gradually as they leave it. The hump gradually spreads out along the road, and the time scale of this process is estimated. The behaviour of such a hump on entering a bottleneck, which is too narrow to admit the increased flow, is studied (§5), and methods are obtained for estimating the extent and duration of the resulting hold-up. The theory is applicable principally to traffic behaviour over a long stretch of road, but the paper concludes (§6) with a discussion of its relevance to problems of flow near junctions, including a discussion of the starting flow at a controlled junction. In the introductory sections 1 and 2, we have included some elementary material on the quantitative study of traffic flow for the benefit of scientific readers unfamiliar with the subject.

3,911 citations

Book
01 Jan 1990
TL;DR: In this paper, the authors describe the derivation of conservation laws and apply them to linear systems, including the linear advection equation, the Euler equation, and the Riemann problem.
Abstract: I Mathematical Theory- 1 Introduction- 11 Conservation laws- 12 Applications- 13 Mathematical difficulties- 14 Numerical difficulties- 15 Some references- 2 The Derivation of Conservation Laws- 21 Integral and differential forms- 22 Scalar equations- 23 Diffusion- 3 Scalar Conservation Laws- 31 The linear advection equation- 311 Domain of dependence- 312 Nonsmooth data- 32 Burgers' equation- 33 Shock formation- 34 Weak solutions- 35 The Riemann Problem- 36 Shock speed- 37 Manipulating conservation laws- 38 Entropy conditions- 381 Entropy functions- 4 Some Scalar Examples- 41 Traffic flow- 411 Characteristics and "sound speed"- 42 Two phase flow- 5 Some Nonlinear Systems- 51 The Euler equations- 511 Ideal gas- 512 Entropy- 52 Isentropic flow- 53 Isothermal flow- 54 The shallow water equations- 6 Linear Hyperbolic Systems 58- 61 Characteristic variables- 62 Simple waves- 63 The wave equation- 64 Linearization of nonlinear systems- 641 Sound waves- 65 The Riemann Problem- 651 The phase plane- 7 Shocks and the Hugoniot Locus- 71 The Hugoniot locus- 72 Solution of the Riemann problem- 721 Riemann problems with no solution- 73 Genuine nonlinearity- 74 The Lax entropy condition- 75 Linear degeneracy- 76 The Riemann problem- 8 Rarefaction Waves and Integral Curves- 81 Integral curves- 82 Rarefaction waves- 83 General solution of the Riemann problem- 84 Shock collisions- 9 The Riemann problem for the Euler equations- 91 Contact discontinuities- 92 Solution to the Riemann problem- II Numerical Methods- 10 Numerical Methods for Linear Equations- 101 The global error and convergence- 102 Norms- 103 Local truncation error- 104 Stability- 105 The Lax Equivalence Theorem- 106 The CFL condition- 107 Upwind methods- 11 Computing Discontinuous Solutions- 111 Modified equations- 1111 First order methods and diffusion- 1112 Second order methods and dispersion- 112 Accuracy- 12 Conservative Methods for Nonlinear Problems- 121 Conservative methods- 122 Consistency- 123 Discrete conservation- 124 The Lax-Wendroff Theorem- 125 The entropy condition- 13 Godunov's Method- 131 The Courant-Isaacson-Rees method- 132 Godunov's method- 133 Linear systems- 134 The entropy condition- 135 Scalar conservation laws- 14 Approximate Riemann Solvers- 141 General theory- 1411 The entropy condition- 1412 Modified conservation laws- 142 Roe's approximate Riemann solver- 1421 The numerical flux function for Roe's solver- 1422 A sonic entropy fix- 1423 The scalar case- 1424 A Roe matrix for isothermal flow- 15 Nonlinear Stability- 151 Convergence notions- 152 Compactness- 153 Total variation stability- 154 Total variation diminishing methods- 155 Monotonicity preserving methods- 156 l1-contracting numerical methods- 157 Monotone methods- 16 High Resolution Methods- 161 Artificial Viscosity- 162 Flux-limiter methods- 1621 Linear systems- 163 Slope-limiter methods- 1631 Linear Systems- 1632 Nonlinear scalar equations- 1633 Nonlinear Systems- 17 Semi-discrete Methods- 171 Evolution equations for the cell averages- 172 Spatial accuracy- 173 Reconstruction by primitive functions- 174 ENO schemes- 18 Multidimensional Problems- 181 Semi-discrete methods- 182 Splitting methods- 183 TVD Methods- 184 Multidimensional approaches

3,827 citations

Book
01 Jan 2000
TL;DR: This paper presents a meta-analyses of Chebyshev differentiation matrices using the DFT and FFT as a guide to solving fourth-order grid problems.
Abstract: Preface 1 Differentiation matrices 2 Unbounded grids: the semidiscrete Fourier transform 3 Periodic grids: the DFT and FFT 4 Smoothness and spectral accuracy 5 Polynomial interpolation and clustered grids 6 Chebyshev differentiation matrices 7 Boundary value problems 8 Chebyshev series and the FFT 9 Eigenvalues and pseudospectra 10 Time-stepping and stability regions 11 Polar coordinates 12 Integrals and quadrature formulas 13 More about boundary conditions 14 Fourth-order problems Afterword Bibliography Index

3,696 citations