scispace - formally typeset
Search or ask a question
Author

G. Bjontegaard

Bio: G. Bjontegaard is an academic researcher. The author has contributed to research in topics: Macroblock & Intra-frame. The author has an hindex of 1, co-authored 1 publications receiving 8302 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the technical features of H.264/AVC is provided, profiles and applications for the standard are described, and the history of the standardization process is outlined.
Abstract: H.264/AVC is newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goals of the H.264/AVC standardization effort have been enhanced compression performance and provision of a "network-friendly" video representation addressing "conversational" (video telephony) and "nonconversational" (storage, broadcast, or streaming) applications. H.264/AVC has achieved a significant improvement in rate-distortion efficiency relative to existing standards. This article provides an overview of the technical features of H.264/AVC, describes profiles and applications for the standard, and outlines the history of the standardization process.

8,646 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality.
Abstract: High Efficiency Video Coding (HEVC) is currently being prepared as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality. This paper provides an overview of the technical features and characteristics of the HEVC standard.

7,383 citations

Journal ArticleDOI
TL;DR: An overview of the basic concepts for extending H.264/AVC towards SVC are provided and the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.
Abstract: With the introduction of the H.264/AVC video coding standard, significant improvements have recently been demonstrated in video compression capability. The Joint Video Team of the ITU-T VCEG and the ISO/IEC MPEG has now also standardized a Scalable Video Coding (SVC) extension of the H.264/AVC standard. SVC enables the transmission and decoding of partial bit streams to provide video services with lower temporal or spatial resolutions or reduced fidelity while retaining a reconstruction quality that is high relative to the rate of the partial bit streams. Hence, SVC provides functionalities such as graceful degradation in lossy transmission environments as well as bit rate, format, and power adaptation. These functionalities provide enhancements to transmission and storage applications. SVC has achieved significant improvements in coding efficiency with an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. This paper provides an overview of the basic concepts for extending H.264/AVC towards SVC. Moreover, the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.

3,592 citations

Proceedings ArticleDOI
25 Oct 2008
TL;DR: This paper presents and characterizes the Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for studies of Chip-Multiprocessors (CMPs), and shows that the benchmark suite covers a wide spectrum of working sets, locality, data sharing, synchronization and off-chip traffic.
Abstract: This paper presents and characterizes the Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for studies of Chip-Multiprocessors (CMPs). Previous available benchmarks for multiprocessors have focused on high-performance computing applications and used a limited number of synchronization methods. PARSEC includes emerging applications in recognition, mining and synthesis (RMS) as well as systems applications which mimic large-scale multithreaded commercial programs. Our characterization shows that the benchmark suite covers a wide spectrum of working sets, locality, data sharing, synchronization and off-chip traffic. The benchmark suite has been made available to the public.

3,514 citations

Journal ArticleDOI
TL;DR: A unified approach to the coder control of video coding standards such as MPEG-2, H.263, MPEG-4, and the draft video coding standard H.264/AVC (advanced video coding) is presented.
Abstract: A unified approach to the coder control of video coding standards such as MPEG-2, H.263, MPEG-4, and the draft video coding standard H.264/AVC (advanced video coding) is presented. The performance of the various standards is compared by means of PSNR and subjective testing results. The results indicate that H.264/AVC compliant encoders typically achieve essentially the same reproduction quality as encoders that are compliant with the previous standards while typically requiring 60% or less of the bit rate.

3,312 citations