scispace - formally typeset
Search or ask a question
Author

G. C. Topp

Bio: G. C. Topp is an academic researcher. The author has contributed to research in topics: Soil water & Water content. The author has an hindex of 4, co-authored 5 publications receiving 4955 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The dependence of the dielectric constant, at frequencies between 1 MHz and 1 GHz, on the volumetric water content is determined empirically in the laboratory as discussed by the authors, and the effect of varying the texture, bulk density, temperature, and soluble salt content on this relationship was also determined.
Abstract: The dependence of the dielectric constant, at frequencies between 1 MHz and 1 GHz, on the volumetric water content is determined empirically in the laboratory. The effect of varying the texture, bulk density, temperature, and soluble salt content on this relationship was also determined. Time-domain reflectometry (TDR) was used to measure the dielectric constant of a wide range of granular specimens placed in a coaxial transmission line. The water or salt solution was cycled continuously to or from the specimen, with minimal disturbance, through porous disks placed along the sides of the coaxial tube. Four mineral soils with a range of texture from sandy loam to clay were tested. An empirical relationship between the apparent dielectric constant Ka and the volumetric water content θv, which is independent of soil type, soil density, soil temperature, and soluble salt content, can be used to determine θv, from air dry to water saturated, with an error of estimate of 0.013. Precision of θv to within ±0.01 from Ka can be obtained with a calibration for the particular granular material of interest. An organic soil, vermiculite, and two sizes of glass beads were also tested successfully. The empirical relationship determined here agrees very well with other experimenters' results, which use a wide range of electrical techniques over the frequency range of 20 MHz and 1 GHz and widely varying soil types. The results of applying the TDR technique on parallel transmission lines in the field to measure θv versus depth are encouraging.

4,855 citations


Cited by
More filters
Book
01 Jan 2011
TL;DR: In this article, the authors present basic tools for elasticity and Hooke's law, effective media, granular media, flow and diffusion, and fluid effects on wave propagation for wave propagation.
Abstract: Preface 1. Basic tools 2. Elasticity and Hooke's law 3. Seismic wave propagation 4. Effective media 5. Granular media 6. Fluid effects on wave propagation 7. Empirical relations 8. Flow and diffusion 9. Electrical properties Appendices.

2,007 citations

Journal ArticleDOI
TL;DR: In this article, the basic principles and practices involved in acquiring high-quality radar data in the field are illustrated by selected case histories, showing how radar has been used to map the bedrock and delineate soil horizons to a depth of more than 20 m.
Abstract: Ground-penetrating radar is a technique which offers a new way of viewing shallow soil and rock conditions. The need to better understanding overburden conditions for activities such as geochemical sampling, geotechnical investigations, and placer exploration, as well as the factors controlling groundwater flow, has generated an increasing demand for techniques which can image the subsurface with higher resolution than previously possible. The areas of application for ground-penetrating radar are diverse. The method has been used successfully to map ice thickness, water depth in lakes, bedrock depth, soil stratigraphy, and water table depth. It is also used to delineate rock fabric, detect voids and identify karst features. The effective application of the radar for the high-resolution definition of soil stratigraphy and fractures in bedrock is highlighted. The basic principles and practices involved in acquiring high quality radar data in the field are illustrated by selected case histories. One example demonstrates how radar has been used to map the bedrock and delineate soil horizons to a depth of more than 20 m. Two case histories show how radar has been used to map fractures and changes of rock type to 40 m range from inside a mine. Another case history demonstrates how radar has also been used to detect and map the extent of groundwater contamination. The corroboration of the radar results by borehole investigations demonstrates the power and utility of the high-resolution radar method as an aid for interpolation and extrapolation of the information obtained with conventional coring programmes. With the advent of new instrumentation and field procedures, the routine application of the radar method is becoming economically viable and the method will see expanded use in the future.

1,962 citations

MonographDOI
09 Jan 2020
TL;DR: The third edition of the reference book as discussed by the authors has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results, and highlights applications in unconventional reservoirs, including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates.
Abstract: Responding to the latest developments in rock physics research, this popular reference book has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results. It brings together the vast literature from the field to address the relationships between geophysical observations and the underlying physical properties of Earth materials - including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates. This third edition includes expanded coverage of topics such as effective medium models, viscoelasticity, attenuation, anisotropy, electrical-elastic cross relations, and highlights applications in unconventional reservoirs. Appendices have been enhanced with new materials and properties, while worked examples (supplemented by online datasets and MATLAB® codes) enable readers to implement the workflows and models in practice. This significantly revised edition will continue to be the go-to reference for students and researchers interested in rock physics, near-surface geophysics, seismology, and professionals in the oil and gas industries.

1,387 citations

Journal ArticleDOI
01 Dec 1994-Nature
TL;DR: In this article, the authors estimate that half of the closed forests of Brazilian Amazonia depend on deep root systems to maintain green canopies during the dry season, and as much as 15% of this deep-soil carbon turns over on annual or decadal timescales.
Abstract: DEFORESTATION and logging transform more forest in eastern and southern Amazonia than in any other region of the world1–3. This forest alteration affects regional hydrology4–11 and the global carbon cycle12–14, but current analyses of these effects neglect an important deep-soil link between the water and carbon cycles. Using rainfall data, satellite imagery and field studies, we estimate here that half of the closed forests of Brazilian Amazonia depend on deep root systems to maintain green canopies during the dry season. Evergreen forests in northeastern Para state maintain evapotranspiration during five-month dry periods by absorbing water from the soil to depths of more than 8m. In contrast, although the degraded pastures of this region also contain deep-rooted woody plants, most pasture plants substantially reduce their leaf canopy in response to seasonal drought, thus reducing dry-season evapotranspiration and increasing potential subsurface runoff relative to the forests they replace. Deep roots that extract water also provide carbon to the soil. The forest soil below 1 m depth contains more carbon than does above-ground biomass, and as much as 15% of this deep-soil carbon turns over on annual or decadal timescales. Thus, forest alteration that affects depth distributions of carbon inputs from roots may also affect net carbon storage in the soil.

1,288 citations

Journal ArticleDOI
TL;DR: A ground-penetrating radar (GPR) is a noninvasive geophysical technique that detects electrical discontinuities in the shallow subsurface as mentioned in this paper, which can be used to detect electrical faults.

963 citations