scispace - formally typeset
Search or ask a question
Author

G. C. Yu

Bio: G. C. Yu is an academic researcher from Southwest Jiaotong University. The author has contributed to research in topics: Air shower & Cosmic ray. The author has an hindex of 15, co-authored 25 publications receiving 999 citations.

Papers
More filters
Journal ArticleDOI
20 Oct 2006-Science
TL;DR: Two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV) is presented, using the large data sample of the Tibet Air Shower Arrays, revealing finer details of the known anisotropies.
Abstract: The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

259 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10 14 to 10 17 eVusing 5:5 ; 10 7 events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m in altitude.
Abstract: We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10 14 to 10 17 eVusing 5:5 ; 10 7 events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m abovesealevel(anatmosphericdepthof 606gcm � 2 ).Thesizespectrumexhibitsasharpkneeatacorrespondingprimary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in thefinal result, assuming interaction models QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure protonandpureironprimarymodelsarealsoexaminedasextremecases.A detector simulationwasalsoperformedtoimproveouraccuracyindeterminingthesizeof theairshowersandtheenergyof theprimaryparticle.Weconfirmedthatthe all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components,leadingtoaweakdependenceontheinteractionmodel or theprimarymass.Thisisthehighest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.

194 citations

Journal ArticleDOI
TL;DR: In this paper, the sidereal anisotropy of cosmic ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003 was analyzed.
Abstract: We present the large-scale sidereal anisotropy of Galactic cosmic-ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003. The sidereal daily variation of cosmic rays observed in this experiment shows an excess of relative intensity around 4-7 hr local sidereal time as well as a deficit around 12 hr local sidereal time. While the amplitude of the excess is not significant when averaged over all declinations, the excess in individual declination bands becomes larger and clearer as the viewing direction moves toward the south. The maximum phase of the excess intensity changes from ~7 hr at the Northern Hemisphere to ~4 hr at the equatorial region. We also show that both the amplitude and the phase of the first harmonic vector of the daily variation are remarkably independent of primary energy in the multi-TeV region. This is the first result determining the energy and declination dependences of the full 24 hr profiles of the sidereal daily variation in the multi-TeV region with a single air shower experiment.

120 citations

Journal ArticleDOI
TL;DR: In this paper, the results of a steady TeV γ-ray point-source search using data taken from the Tibet HD (1997 February-1999 September) and Tibet III (1999 November-2001 October) arrays are presented.
Abstract: Results of a steady TeV γ-ray point-source search using data taken from the Tibet HD (1997 February-1999 September) and Tibet III (1999 November-2001 October) arrays are presented. From 0° to 60° in declination, significant excesses from the well-known steady source Crab Nebula and the high state of the flare-type source Markarian 421 are observed. Because the levels of significance from other positions are not sufficiently high, 90% confidence level upper limits on the flux are set assuming different power-law spectra. To allow cross-checking, two independently developed analyses are used in this work.

74 citations

Journal ArticleDOI
TL;DR: In this paper, a power-law energy spectrum for γ-rays from this source is assumed, the spectral index is calculated to be -3.24 ± 0.69 at the most active phase in 2001.
Abstract: Several strong TeV γ-ray flares were detected from Mrk 421 in the years 2000 and 2001 by the Tibet III air shower array at a level of statistical significance of 5.1 σ. Mrk 421 was unprecedentedly active at X-ray and TeV γ-ray energies during this period, and a positive correlation was found between the change of the all-sky monitor Rossi X-Ray Timing Explorer X-ray flux and the Tibet TeV γ-ray flux. When a power-law energy spectrum for γ-rays from this source is assumed, the spectral index is calculated to be -3.24 ± 0.69 at the most active phase in 2001. The spectral index observed by the Tibet air shower array is consistent with those obtained via imaging air Cerenkov telescopes.

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey of the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10 15 eV is given in this article, followed by an exposition of basic principles.
Abstract: We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10 15 eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes is explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data, including direct and indirect—especially γ-ray—observations, and indicate what we can learn about cosmic-ray propagation. Some important topics, including electron and antiparticle propagation, are chosen for discussion.

1,072 citations

Journal ArticleDOI
01 Apr 2011-Science
TL;DR: PAMELA data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy and find that the spectral shapes of these two species are different and cannot be described well by a single power law.
Abstract: Protons and helium nuclei are the most abundant components of the cosmic radiation Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 12 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics) We find that the spectral shapes of these two species are different and cannot be described well by a single power law These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data

900 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the possible mechanisms for the generation of cosmological magnetic fields, discuss their evolution in an expanding universe filled with the cosmic plasma and provide a critical review of the literature on the subject.
Abstract: We review the possible mechanisms for the generation of cosmological magnetic fields, discuss their evolution in an expanding Universe filled with the cosmic plasma and provide a critical review of the literature on the subject. We put special emphasis on the prospects for observational tests of the proposed cosmological magnetogenesis scenarios using radio and gamma-ray astronomy and ultra-high-energy cosmic rays. We argue that primordial magnetic fields are observationally testable. They lead to magnetic fields in the intergalactic medium with magnetic field strength and correlation length in a well defined range. We also state the unsolved questions in this fascinating open problem of cosmology and propose future observations to address them.

662 citations

Journal ArticleDOI
Felix Aharonian1, A. G. Akhperjanian, A. R. Bazer-Bachi2, M. Beilicke3, Wystan Benbow1, David Berge1, Konrad Bernlöhr1, Konrad Bernlöhr4, Catherine Boisson2, O. Bolz1, V. Borrel2, Ilana M. Braun1, F. Breitling4, A. M. Brown5, P. M. Chadwick5, L.-M. Chounet6, R. Cornils3, Luigi Costamante1, Luigi Costamante2, B. Degrange6, Hugh Dickinson5, A. Djannati-Ataï7, L. O'c. Drury8, Guillaume Dubus6, Dimitrios Emmanoulopoulos, P. Espigat7, F. Feinstein9, G. Fontaine6, Y. Fuchs10, Seb. Funk1, Y. A. Gallant9, B. Giebels6, Stefan Gillessen1, J. F. Glicenstein11, P. Goret11, C. Hadjichristidis5, M. Hauser, G. Heinzelmann3, Gilles Henri10, G. Hermann1, Jim Hinton1, Werner Hofmann1, M. Holleran12, Dieter Horns1, A. Jacholkowska9, O. C. de Jager12, B. Khélifi1, Nu. Komin4, A. Konopelko4, A. Konopelko1, I. J. Latham5, R. Le Gallou5, A. Lemière7, M. Lemoine-Goumard6, N. Leroy6, Thomas Lohse4, Jean Michel Martin2, Olivier Martineau-Huynh, A. Marcowith2, Conor Masterson2, Conor Masterson1, T. J. L. McComb5, M. de Naurois, S. J. Nolan5, A. Noutsos5, K. J. Orford5, J. L. Osborne5, M. Ouchrif2, M. Panter1, Guy Pelletier10, S. Pita7, Gerd Pühlhofer1, Michael Punch7, B. C. Raubenheimer12, Martin Raue3, J. Raux, S. M. Rayner5, A. Reimer13, Olaf Reimer13, J. Ripken3, L. Rob14, L. Rolland, Gavin Rowell1, V. Sahakian, L. Saugé10, S. Schlenker4, Reinhard Schlickeiser13, C. Schuster13, Ullrich Schwanke4, M. Siewert13, Helene Sol2, D. Spangler5, R. Steenkamp15, C. Stegmann4, J.-P. Tavernet, R. Terrier7, C. G. Théoret7, M. Tluczykont6, M. Tluczykont2, G. Vasileiadis9, Christo Venter12, Pascal Vincent, Heinrich J. Völk1, Stefan Wagner 
TL;DR: The distribution in Galactic latitude of the detected sources appears to be consistent with a scale height in the Galactic disk for the parent population smaller than 100 pc, consistent with expectations for supernova remnants and/or pulsar wind nebulae.
Abstract: We report on a survey of the inner part of the Galactic plane in very high energy gamma rays with the H.E.S.S. Cerenkov telescope system. The Galactic plane between +/-30° in longitude and +/-3° in latitude relative to the Galactic center was observed in 500 pointings for a total of 230 hr, reaching an average flux sensitivity of 2% of the Crab Nebula at energies above 200 GeV. Fourteen previously unknown sources were detected at a significance level greater than 4 σ after accounting for all trials involved in the search. Initial results on the eight most significant of these sources were already reported elsewhere (Aharonian and coworkers). Here we present detailed spectral and morphological information for all the new sources, along with a discussion on possible counterparts in other wavelength bands. The distribution in Galactic latitude of the detected sources appears to be consistent with a scale height in the Galactic disk for the parent population smaller than 100 pc, consistent with expectations for supernova remnants and/or pulsar wind nebulae.

586 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of AGN multi-wavelength properties with the aim of painting their "big picture" through observations in each electromagnetic band from radio to gamma-gamma -rays as well as AGN variability.
Abstract: Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different “flavours” in the literature that now comprise a complex and confusing AGN “zoo”. It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their “big picture” through observations in each electromagnetic band from radio to $$\gamma $$ -rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.

384 citations