scispace - formally typeset
Search or ask a question
Author

G.D. Jenney

Bio: G.D. Jenney is an academic researcher. The author has contributed to research in topics: Hydraulic machinery & Aileron. The author has an hindex of 1, co-authored 1 publications receiving 127 citations.

Papers
More filters
Proceedings ArticleDOI
01 Jan 2000
TL;DR: In this article, the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA was discussed, as well as its integration with the F/A-18 flight control system.
Abstract: Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 flight control system. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

134 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the concept of a more electric aircraft (MEA) is described, which involves removing the need for on-engine hydraulic power generation and bleed air off-takes, and increasing use of power electronics in the starter/generation system of the main engine.
Abstract: The latest advances in electric and electronic aircraft technologies from the point of view of an "all-electric" aircraft are presented herein. Specifically, we describe the concept of a "more electric aircraft" (MEA), which involves removing the need for on-engine hydraulic power generation and bleed air off-takes, and the increasing use of power electronics in the starter/generation system of the main engine. Removal of the engine hydraulic pumps requires fully-operative electrical power actuators and mastery of the flight control architecture. The paper presents a general overview of the electrical power generation system and electric drives for the MEA, with special regard to the flight controls. Some discussion regarding the interconnection of nodes and safety of buses and protocols in distributed systems is also presented

781 citations

Proceedings ArticleDOI
07 Mar 2009
TL;DR: In this article, the authors present a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them, and a diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators.
Abstract: Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.

137 citations

Journal ArticleDOI
01 Nov 2018
TL;DR: This paper reviews the published application and development of the airborne linear electromechanical actuator and reveals key technologies and research challenges in terms of fault-tolerant motor, high-thrust mechanical transmission, multidisciplinary modelling, thermal management, and thermal analysis.
Abstract: Conventional hydraulic actuators in aircraft systems are high maintenance and more vulnerable to high temperatures and pressures. This usually leads to high operating costs and low efficiency. With the rapid development of More/All Electric technology, power-by-wire actuators are being broadly employed to improve the maintainability, reliability, and manoeuvrability of future aircraft. This paper reviews the published application and development of the airborne linear electromechanical actuator. First, the general configuration, merits, and limitations of the gear-drive electromechanical actuator and the direct-drive electromechanical actuator are analysed. Second, the development state of the electromechanical actuator testing systems is elaborated in three aspects, namely the performance testing based on room temperature, testing in a thermal vacuum environment, and iron bird. Common problems and tendencies of the testing systems are summarized. Key technologies and research challenges are revealed in t...

131 citations

Journal ArticleDOI
TL;DR: In this paper, a sizing and performance methodology for hybrid-energy aircraft is proposed, and a design study of a battery and fuel hybrid energy single-aisle retrofit is conducted to demonstrate the methodology and analyze the implications of the associated new design variables on the s...
Abstract: The Strategic Research and Innovation Agenda and NASA N+3 goals have set new challenges for the aeronautical community via declaration of dramatic efficiency improvements. Because further evolutionary improvements do not appear to be sufficient, envisioning disruptive technologies turn out to be essential to reach the set of future targets. The design of innovative integrated energy–power systems is certainly a major promising element as can be shown by the increasing interest toward hybrid energy and universally electric aircraft. The consideration of these new types of aircraft represents a new challenge for conventional aircraft sizing and performance methods. As an extension of the conventional methods used for fuel-energy aircraft, a sizing and performance methodology for hybrid-energy aircraft is proposed. A design study of a battery and fuel hybrid-energy single-aisle retrofit is conducted to demonstrate the methodology and to analyze the implications of the associated new design variables on the s...

110 citations

Journal ArticleDOI
10 Jul 2018
TL;DR: The benefits of the integrated motor drive with the WBG-based power electronics for the EHA systems are investigated and the traditional solutions are investigated.
Abstract: An integration of an electric motor and a drive with wide-bandgap (WBG) devices possesses numerous attractive features for electrified and decentralized actuation systems. The WBG devices can operate at a high-junction temperature (>170 °C) with improved efficiency due to fast switching speed and low on-state resistance. It also leads to better performance and higher power density electro-hydrostatic actuators (EHAs) than the traditional solutions, which are being widely adopted in industrial applications such as aerospace, robotics, automobiles, manufacturing, wind turbine, and off-road vehicles. This paper introduces and investigates the benefits of the integrated motor drive with the WBG-based power electronics for the EHA systems.

92 citations