scispace - formally typeset
Search or ask a question
Author

G. di Prisco

Bio: G. di Prisco is an academic researcher from National Research Council. The author has contributed to research in topics: Effects of global warming & Climate change. The author has an hindex of 8, co-authored 18 publications receiving 738 citations. Previous affiliations of G. di Prisco include Canadian Real Estate Association.

Papers
More filters
Journal ArticleDOI
TL;DR: The Southern Hemisphere climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system as discussed by the authors.
Abstract: The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment.

559 citations

Journal ArticleDOI
TL;DR: The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic.

72 citations

Book ChapterDOI
TL;DR: This work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors.
Abstract: The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors.

40 citations

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge on the structure, function and phylogeny of haemoglobins of notothenioid fishes and, on the basis of crystallographic analysis, the evolution of the Root effect is analysed.
Abstract: Since haemoglobins of all animal species have the same haem group, differences in their properties, including oxygen affinity, electrophoretic mobility and pH sensitivity, must result from the interaction of the prosthetic group with specific amino-acid residues in the primary structure. For this reason, fish globins have been the subject of extensive studies in recent years, not only for their structural characteristics, but also because they offer the possibility to investigate the evolutionary history of these ancient molecules in marine and freshwater species living in a great variety of environmental conditions. This review summarizes the current knowledge on the structure, function and phylogeny of haemoglobins of notothenioid fishes. On the basis of crystallographic analysis, the evolution of the Root effect is analysed. Adaptation of the oxygen transport system in notothenioids seems to be based on evolutionary changes, involving levels of biological organization higher than the structure of haemoglobin. These include changes in the rate of haemoglobin synthesis or in regulation by allosteric effectors, which affect the amount of oxygen transported in blood. These factors are thought to be more important for short-term response to environmental challenges than previously believed.

35 citations

Journal ArticleDOI
TL;DR: The high multiplicity of functionally distinct haemoglobins indicates that P. borchgrevinki has a specialized haemoglobin system.
Abstract: Pagothenia borchgrevinki has a higher haemoglobin concentration than other Antarctic notothenioids and the high oxygen capacity may correlate with the relatively active mode of life of this fish. The fish has five haemoglobins (Hb C, Hb 0, Hb 1, Hb 2 and Hb 3) with Hb 1 accounting for 70-80% of the total, and Hb C being present in trace amounts. Hb 1 and Hb 2 are functionally similar in terms of Bohr and Root effects. Hb 3 has a weaker Bohr effect than Hb I and Hb 2, and the Root effect is similar to that of Hb 1. Hb 0 has a strong Bohr effect and the Root effect is enhanced to a larger extent by the physiological effectors chlorides and phosphates than that of the other components with the exception of Hb C. The heats of oxygenation are lower than those of temperate fish haemoglobins. Temperature variations may have a different effect on the functional properties of each haemoglobin, and chloride and phosphates may play an important role in the conformational change between the oxy and deoxy structures. The complete amino acid sequences of Hb 1 and Hb 0, as well as partial N-terminal or internal sequences of the other haemoglobins, have been established. The high multiplicity of functionally distinct haemoglobins indicates that P. borchgrevinki has a specialized haemoglobin system.

28 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: This paper presents a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM) photogrammetric techniques.
Abstract: Unmanned Aerial Vehicles (UAVs) are an exciting new remote sensing tool capable of acquiring high resolution spatial data. Remote sensing with UAVs has the potential to provide imagery at an unprecedented spatial and temporal resolution. The small footprint of UAV imagery, however, makes it necessary to develop automated techniques to geometrically rectify and mosaic the imagery such that larger areas can be monitored. In this paper, we present a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM) photogrammetric techniques. Images are processed to create three dimensional point clouds, initially in an arbitrary model space. The point clouds are transformed into a real-world coordinate system using either a direct georeferencing technique that uses estimated camera positions or via a Ground Control Point (GCP) technique that uses automatically identified GCPs within the point cloud. The point cloud is then used to generate a Digital Terrain Model (DTM) required for rectification of the images. Subsequent georeferenced images are then joined together to form a mosaic of the study area. The absolute spatial accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique achieves an accuracy of approximately 10–15 cm.

609 citations

Journal ArticleDOI
TL;DR: The Southern Hemisphere climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system as discussed by the authors.
Abstract: The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment.

559 citations

Journal Article
TL;DR: In this article, a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics, including a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized.
Abstract: If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h. This nonlocal “K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind-driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double-diffusion density ratio, Rρ. Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long-Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives.

409 citations