scispace - formally typeset
Search or ask a question
Author

G. E. Nason

Bio: G. E. Nason is an academic researcher from Alberta Environment. The author has contributed to research in topics: Mineralization (soil science) & Nitrification. The author has an hindex of 1, co-authored 1 publications receiving 680 citations.

Papers
More filters
Journal ArticleDOI
01 Jun 1994-Ecology
TL;DR: The measurement of gross rates of N transfor- mations in soil provides a powerful tool for assessing C and N cycling relationships in forests, and the utilization of lower quality substrates as C availability declined during incubation is suggested.
Abstract: We conducted a 456-d laboratory incubation of an old-growth coniferous forest soil to aid in the elucidation of C controls on N cycling processes in forest soils. Gross rates of N mineralization, immobilization, and nitrification were measured by 'IN isotope dilution, and net rates of N mineralization and nitrification were calculated from changes in KCl-extractable inorganic N and NOE-EN pool sizes, respectively. Changes in the availability of C were assessed by monitoring rates of CO, evolution and the sizes of extractable organic C and microbial biomass pools. Net and gross rates of N mineralization (r2 = 0.038, P =.676) and nitrification (r2 = 0.403, P = .125) were not significantly correlated over the course of the incubation, suggesting that the factors controlling N consumptive and productive processes do not equally affect these processes. A significant increase in the NO, pool size (net nitrification) only occurred after 140 d, when the NO3- pool size increased suddenly and massively. However, gross nitrification rates were substantial throughout the entire incubation and were poorly correlated with these changes in NO3 pool sizes. Concurrent decreases in the microbial biomass suggest that large increases in NO3 pool sizes after prolonged incubation of coniferous forest soil may arise from re- ductions in the rate of microbial immobilization of NO3, rather than from one of the mechanisms proposed previously (e.g., sequestering of NH,+ by microbial heterotrophs, the deactivation of allelopathic compounds, or large increases in autotrophic nitrifier pop- ulations). Strong correlations were found between rates of CO2 evolution and gross N mineralization (r2 = 0.974, P < .0001) and immobilization (r2 = 0.980, P < .0001), but not between CO, evolution and net N mineralization rates. Microbial growth efficiency, determined by combining estimates of gross N immobilization, CO2 evolution, and micro- bial biomass C and N pool sizes, declined exponentially over the incubation. These results suggest the utilization of lower quality substrates as C availability declined during incu- bation. Results from this research indicate the measurement of gross rates of N transfor- mations in soil provides a powerful tool for assessing C and N cycling relationships in forests.

716 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2004-Ecology
TL;DR: A complete new conceptual model of the soil N cycle needs to incorporate recent research on plant–microbe competition and microsite processes to explain the dynamics of N across the wide range of N availability found in terrestrial ecosystems.
Abstract: Until recently, the common view of the terrestrial nitrogen cycle had been driven by two core assumptions—plants use only inorganic N and they compete poorly against soil microbes for N. Thus, plants were thought to use N that microbes “left over,” allowing the N cycle to be divided cleanly into two pieces—the microbial decomposition side and the plant uptake and use side. These were linked by the process of net mineralization. Over the last decade, research has changed these views. N cycling is now seen as being driven by the depolymerization of N-containing polymers by microbial (including mycorrhizal) extracellular enzymes. This releases organic N-containing monomers that may be used by either plants or microbes. However, a complete new conceptual model of the soil N cycle needs to incorporate recent research on plant–microbe competition and microsite processes to explain the dynamics of N across the wide range of N availability found in terrestrial ecosystems. We discuss the evolution of thinking abou...

2,126 citations

Journal ArticleDOI
TL;DR: In the US, nitrogen deposition remains relatively constant in the northeastern United States and is increasing in the Southeast and the West (Fenn et al. as mentioned in this paper, 2003), while acid acid deposition is increasing.
Abstract: N itrogen emissions to the atmosphere due to human activity remain elevated in industrialized regions of the world and are accelerating in many developing regions (Galloway 1995). Although the deposition of sulfur has been reduced over much of the United States and Europe by aggressive environmental protection policies, current nitrogen deposition reduction targets in the US are modest. Nitrogen deposition remains relatively constant in the northeastern United States and is increasing in the Southeast and the West (Fenn et al. in press). The US acid deposition effects

1,734 citations

Journal ArticleDOI
20 Apr 2000-Nature
TL;DR: Data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, confirm that many European forest ecosystems act as carbon sinks and indicate that, in general, ecosystem respiration determines netcosystem carbon exchange.
Abstract: Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol1. Several studies suggest that the terrestrial biosphere is gaining carbon2,3,4,5,6,7,8, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha-1 yr-1, with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.

1,636 citations

Journal ArticleDOI
TL;DR: In this paper, the current knowledge of microbial processes affecting C sequestration in agroecosystems is reviewed, and gaps within our knowledge on MOM-C dynamics and how they are related to soil properties and agricultural practices are identified.
Abstract: This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contribution to soil C storage is directly related to microbial community dynamics and the balance between formation and degradation of microbial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Consequently, the microbial contribution to C sequestration is governed by the interactions between the amount of microbial biomass, microbial community structure, microbial byproducts, and soil properties such as texture, clay mineralogy, pore-size distribution, and aggregate dynamics. The capacity of a soil to protect microbial biomass and microbially derived organic matter (MOM) is directly and/or indirectly (i.e., through physical protection by aggregates) related to the reactive properties of clays. However, the stabilization of MOM in the soil is also related to the efficiency with which microorganisms utilize substrate C and the chemical nature of the byproducts they produce. Crop rotations, reduced or no-tillage practices, organic farming, and cover crops increase total microbial biomass and shift the community structure toward a more fungal-dominated community, thereby enhancing the accumulation of MOM. A quantitative and qualitative improvement of SOM is generally observed in agroecosystems favoring a fungal-dominated community, but the mechanisms leading to this improvement are not completely understood. Gaps within our knowledge on MOM-C dynamics and how they are related to soil properties and agricultural practices are identified.

1,576 citations

Journal ArticleDOI
TL;DR: Measurements of δ15 N might offer the advantage of giving insights into the N cycle without disturbing the system by adding 15 N tracer, as well as giving information on N source effects, which can give insights into N cycle rates.
Abstract: Equilibrium and kinetic isotope fractionations during incomplete reactions result in minute differences in the ratio between the two stable N isotopes, 15N and 14N, in various N pools. In ecosystems such variations (usually expressed in per mil [δ15N] deviations from the standard atmospheric N2) depend on isotopic signatures of inputs and outputs, the input–output balance, N transformations and their specific isotope effects, and compartmentation of N within the system. Products along a sequence of reactions, e.g. the N mineralization–N uptake pathway, should, if fractionation factors were equal for the different reactions, become progressively depleted. However, fractionation factors vary. For example, because nitrification discriminates against 15N in the substrate more than does N mineralization, NH4+ can become isotopically heavier than the organic N from which it is derived.Levels of isotopic enrichment depend dynamically on the stoichiometry of reactions, as well as on specific abiotic and biotic conditions. Thus, the δ15N of a specific N pool is not a constant, and δ15N of a N compound added to the system is not a conservative, unchanging tracer. This fact, together with analytical problems of measuring δ15N in small and dynamic pools of N in the soil–plant system, and the complexity of the N cycle itself (for instance the abundance of reversible reactions), limit the possibilities of making inferences based on observations of 15N abundance in one or a few pools of N in a system. Nevertheless, measurements of δ15N might offer the advantage of giving insights into the N cycle without disturbing the system by adding 15N tracer.Such attempts require, however, that the complex factors affecting δ15N in plants be taken into account, viz. (i) the source(s) of N (soil, precipitation, NOx, NH3, N2-fixation), (ii) the depth(s) in soil from which N is taken up, (iii) the form(s) of soil-N used (organic N, NH4+, NO3−), (iv) influences of mycorrhizal symbioses and fractionations during and after N uptake by plants, and (v) interactions between these factors and plant phenology. Because of this complexity, data on δ15N can only be used alone when certain requirements are met, e.g. when a clearly discrete N source in terms of amount and isotopic signature is studied. For example, it is recommended that N in non-N2-fixing species should differ more than 5‰ from N derived by N2-fixation, and that several non-N2-fixing references are used, when data on δ15N are used to estimate N2-fixation in poorly described ecosystems.As well as giving information on N source effects, δ15N can give insights into N cycle rates. For example, high levels of N deposition onto previously N-limited systems leads to increased nitrification, which produces 15N-enriched NH4+ and 15N-depleted NO3−. As many forest plants prefer NH4+ they become enriched in 15N in such circumstances. This change in plant δ15N will subsequently also occur in the soil surface horizon after litter-fall, and might be a useful indicator of N saturation, especially since there is usually an increase in δ15N with depth in soils of N-limited forests.Generally, interpretation of 15N measurements requires additional independent data and modelling, and benefits from a controlled experimental setting. Modelling will be greatly assisted by the development of methods to measure the δ15N of small dynamic pools of N in soils. Direct comparisons with parallel low tracer level 15N studies will be necessary to further develop the interpretation of variations in δ15N in soil–plant systems. Another promising approach is to study ratios of 15N[ratio ]14N together with other pairs of stable isotopes, e.g. 13C[ratio ]12C or 18O[ratio ]16O, in the same ion or molecules. This approach can help to tackle the challenge of distinguishing isotopic source effects from fractionations within the system studied.

1,518 citations