scispace - formally typeset
Search or ask a question
Author

G.E. Scuseria

Bio: G.E. Scuseria is an academic researcher. The author has contributed to research in topics: Gaussian. The author has an hindex of 1, co-authored 1 publications receiving 3571 citations.
Topics: Gaussian

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.

934 citations

Journal ArticleDOI
TL;DR: The CM5 model predicts dipole moments for the tested molecules that are more accurate on average than those from the original Hirshfeld method or from many other popular schemes including atomic polar tensor and Löwdin, Mulliken, and natural population analyses.
Abstract: We propose a novel approach to deriving partial atomic charges from population analysis. The new model, called Charge Model 5 (CM5), yields class IV partial atomic charges by mapping from those obtained by Hirshfeld population analysis of density functional electronic charge distributions. The CM5 model utilizes a single set of parameters derived by fitting to reference values of the gas-phase dipole moments of 614 molecular structures. An additional test set (not included in the CM5 parametrization) contained 107 singly charged ions with nonzero dipole moments, calculated from the accurate electronic charge density, with respect to the center of nuclear charges. The CM5 model is applicable to any charged or uncharged molecule composed of any element of the periodic table in the gas phase or in solution. The CM5 model predicts dipole moments for the tested molecules that are more accurate on average than those from the original Hirshfeld method or from many other popular schemes including atomic polar ten...

600 citations

Journal ArticleDOI
TL;DR: A new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure is reported, showing outstanding separation performance in organic solvents.
Abstract: Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.

543 citations

Journal ArticleDOI
TL;DR: Adsorption enthalpies obtained from ab initio molecular dynamics employing non-local optB88-vdW functional were in excellent agreement with the experimental data, indicating that the functional can cover physical phenomena behind adsorption of organic molecules on graphene sufficiently well.
Abstract: We present a combined experimental and theoretical quantification of the adsorption enthalpies of seven organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate, hexane, and toluene) on graphene. Adsorption enthalpies were measured by inverse gas chromatography and ranged from −5.9 kcal/mol for dichloromethane to −13.5 kcal/mol for toluene. The strength of interaction between graphene and the organic molecules was estimated by density functional theory (PBE, B97D, M06-2X, and optB88-vdW), wave function theory (MP2, SCS(MI)-MP2, MP2.5, MP2.X, and CCSD(T)), and empirical calculations (OPLS-AA) using two graphene models: coronene and infinite graphene. Symmetry-adapted perturbation theory calculations indicated that the interactions were governed by London dispersive forces (amounting to ∼60% of attractive interactions), even for the polar molecules. The results also showed that the adsorption enthalpies were largely controlled by the interaction energy. Adsorption enthalpies obtaine...

410 citations

Journal ArticleDOI
TL;DR: It is observed for this materials class that electron transport is limited by traps that exhibit a gaussian energy distribution in the bandgap, which indicates that the electron traps have a common origin that, it is suggested, is most likely related to hydrated oxygen complexes.
Abstract: Electron transport in semiconducting polymers is usually inferior to hole transport, which is ascribed to charge trapping on isolated defect sites situated within the energy bandgap. However, a general understanding of the origin of these omnipresent charge traps, as well as their energetic position, distribution and concentration, is lacking. Here we investigate electron transport in a wide range of semiconducting polymers by current-voltage measurements of single-carrier devices. We observe for this materials class that electron transport is limited by traps that exhibit a Gaussian energy distribution in the bandgap. Remarkably, the electron-trap distribution is identical for all polymers considered: the number of traps amounts to 3 × 1023 traps per m3 centred at an energy of ∼3.6 eV below the vacuum level, with a typical distribution width of ∼0.1 eV. This indicates that the electron traps have a common origin that, we suggest, is most likely related to hydrated oxygen complexes. A consequence of this finding is that the trap-limited electron current can be predicted for any polymer. © 2012 Macmillan Publishers Limited. All rights reserved.

401 citations