scispace - formally typeset
Search or ask a question
Author

G.J. Foschini

Bio: G.J. Foschini is an academic researcher from Bell Labs. The author has contributed to research in topics: Spectral efficiency & Channel allocation schemes. The author has an hindex of 24, co-authored 36 publications receiving 1946 citations.

Papers
More filters
Journal ArticleDOI
G.J. Foschini1, J. Salz1
TL;DR: A dynamic routing policy where messages that arrive at a certain node are routed to leave the node on the link having the shorter queue, and it is found that the average delay for the dynamic system is better by a factor of K.
Abstract: Diffusion theory has sometimes been successful in providing excellent approximate solutions to difficult queueing problems. Here we explore whether such methods can be used to analyze a basic dynamic routing strategy associated with a single idealized node in a data network. We analyze a dynamic routing policy where messages, or packets, that arrive at a certain node are routed to leave the node on the link having the shorter queue. In the model, message or packet arrivals are Poisson and the service time is exponentially distributed. We explore a heavy traffic diffusion method and we also discuss the limitations of an ad hoc approach to applying diffusion. For a node with K outgoing queues we find, under the assumption of heavy traffic, the optimum dynamic strategy, in the sense of minimizing the average delay. When this optimum dynamic strategy is compared to a static strategy where the outgoing traffic is split among the K queues, we find that the average delay for the dynamic system is better by a factor of K .

198 citations

Journal ArticleDOI
G.J. Foschini1, B. Gopinath
TL;DR: The structure of optimal policies for the model considered with three types of users is determined, which consists of limiting the number of waiting requests of each type, and reserving a part of the memory to each type.
Abstract: Efficient design of service facilities, such as data or computer networks that meet random demands, often leads to the sharing of resources among users. Contention for the use of a resource results in queueing. The waiting room is a part of any such service facility. The number of accepted service requests per unit of time (throughput), or the fraction of the time the servers are busy (utilization), are often used as performance measures to compare designs. Most common models in queueing theory consider the design of the waiting rooms with the assumption that, although individual requests may differ from one another, they are statistically indistinguishable. However, there are several instances where available information allows us to classify the requests for service into different types. In such cases the design of the service facility not only involves the determination of an optimum size for the waiting room but also the rules of sharing it among the different types. Even with a fixed set of resources, the rules of sharing them can influence performance. In data networks (or computer networks) the "waiting room" consists of memory of one kind or another. Messages (jobs) destined for different locations (processors) sharing common storage is an important example of shared use of memory. Recently, Kleinrock and Kamoun have modeled such use of memory and computed the performance of various policies for managing the allocation of memory to several types of users. Decisions to accept or reject a demand for service were based on the number of waiting requests of each type. However, the optimal policy was not determined even in the case where there were only two types of users. We determine the structure of optimal policies for the model considered with three types of users. The optimal policy consists of limiting the number of waiting requests of each type, and reserving a part of the memory to each type.

132 citations

Proceedings ArticleDOI
27 Nov 2000
TL;DR: It is shown that iterative detection and decoding (IDD) can significantly improve the performance of coded BLAST and may in fact reduce the overall receiver complexity.
Abstract: In BLAST (Bell Labs' Layered Space Time) systems, very high spectral efficiency can be achieved by employing antenna arrays at both transmit and receive sides. Coding for these array systems is an interesting topic, as such, has seen intensive research. We study coding architectures constructed from conventional codes including convolutional codes and Reed Solomon codes. Our main interest is in the performance and complexity trade-offs involved in the design of coding/decoding and signal detection algorithms. We show that iterative detection and decoding (IDD) can significantly improve the performance of coded BLAST. In some cases, IDD allows for very simple detection algorithms to be used at the receiver front end. Therefore, it may in fact reduce the overall receiver complexity. Our results again demonstrate that coded V-BLAST (vertical-BLAST) is a promising architecture to achieve the great potential of BLAST with limited complexity.

125 citations

Journal ArticleDOI
TL;DR: This work determines the call blocking performance of channel-allocation algorithms where every channel is available for use in every cell and where decisions are made by mobiles/portables based only on local observations and suggests that an aggressive algorithm could provide a substantially reduced blocking probability.
Abstract: We determine the call blocking performance of channel-allocation algorithms where every channel is available for use in every cell and where decisions are made by mobiles/portables based only on local observations. Using a novel Erlang-B approximation method, together with simulation, we demonstrate that even the simplest algorithm, the timid, compares favorably with impractical, centrally administered fixed channel allocation. Our results suggest that an aggressive algorithm, that is, one requiring call reconfigurations, could provide a substantially reduced blocking probability. We also present some algorithms which take major steps toward achieving the excellent blocking performance of the hypothetical aggressive algorithm but having the stability of the timid algorithm. >

118 citations

Journal ArticleDOI
TL;DR: A novel technique is described for determining the system spectral efficiency (measured in bits per second per Hertz per cell sector) by incorporating the link level results with system level outage simulations of the down-link CDMA schemes.
Abstract: Providing wireless high-speed packet data services for Web browsing and streaming multimedia applications will be a key feature in future code-division multiple-access (CDMA) systems. We study down-link CDMA schemes for providing such services using multiple antennas at the transmitter and receiver. We propose a generalization of the point-to-point narrowband Bell Labs layered space-time (BLAST) system to a wideband multiple access system which simultaneously supports multiple users through code spreading. We discuss transmission options for achieving transmit diversity and spatial separation and introduce a generalization of the vertical BLAST detector for CDMA signals. Using link level simulations, we determine the bit-error rates versus signal-to-interference ratio of the various transmitter options. We then describe a novel technique for determining the system spectral efficiency (measured in bits per second per Hertz per cell sector) by incorporating the link level results with system level outage simulations. Using four antennas at the transmitter and eight antennas at each receiver, the system can support multiple receivers at 16 times the voice rate, resulting in a system spectral efficiency an order magnitude higher than a conventional single-antenna voice system.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
Thomas L. Marzetta1
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.

6,248 citations

Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Journal ArticleDOI
TL;DR: While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.
Abstract: The use of space-division multiple access (SDMA) in the downlink of a multiuser multiple-input, multiple-output (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the co-channel interference of other users. Typical optimization problems of interest include the capacity problem - maximizing the sum information rate subject to a power constraint-or the power control problem-minimizing transmitted power such that a certain quality-of-service metric for each user is met. Neither of these problems possess closed-form solutions for the general multiuser MIMO channel, but the imposition of certain constraints can lead to closed-form solutions. This paper presents two such constrained solutions. The first, referred to as "block-diagonalization," is a generalization of channel inversion when there are multiple antennas at each receiver. It is easily adapted to optimize for either maximum transmission rate or minimum power and approaches the optimal solution at high SNR. The second, known as "successive optimization," is an alternative method for solving the power minimization problem one user at a time, and it yields superior results in some (e.g., low SNR) situations. Both of these algorithms are limited to cases where the transmitter has more antennas than all receive antennas combined. In order to accommodate more general scenarios, we also propose a framework for coordinated transmitter-receiver processing that generalizes the two algorithms to cases involving more receive than transmit antennas. While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.

3,291 citations

Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations