scispace - formally typeset
Search or ask a question
Author

G. J.H. Boers

Bio: G. J.H. Boers is an academic researcher. The author has contributed to research in topics: Reductase & Hyperhomocysteinemia. The author has an hindex of 1, co-authored 1 publications receiving 5486 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work has identified a common mutation in MTHFR which alters a highly-conserved amino acid; the substitution occurs at a frequency of approximately 38% of unselected chromosomes and may represent an important genetic risk factor in vascular disease.
Abstract: Hyperhomocysteinaemia has been identified as a risk factor for cerebrovascular, peripheral vascular and coronary heart disease. Elevated levels of plasma homocysteine can result from genetic or nutrient-related disturbances in the trans-sulphuration or re-methylation pathways for homocysteine metabolism. 5, 10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the predominant circulatory form of folate and carbon donor for the re-methylation of homocysteine to methionine. Reduced MTHFR activity with a thermolabile enzyme has been reported in patients with coronary and peripheral artery disease. We have identified a common mutation in MTHFR which alters a highly-conserved amino acid; the substitution occurs at a frequency of approximately 38% of unselected chromosomes. The mutation in the heterozygous or homozygous state correlates with reduced enzyme activity and increased thermolability in lymphocyte extracts; in vitro expression of a mutagenized cDNA containing the mutation confirms its effect on thermolability of MTHFR. Finally, individuals homozygous for the mutation have significantly elevated plasma homocysteine levels. This mutation in MTHFR may represent an important genetic risk factor in vascular disease.

5,606 citations


Cited by
More filters
Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
04 Oct 1995-JAMA
TL;DR: Higher folic acid intake by reducing tHcy levels promises to prevent arteriosclerotic vascular disease and under different assumptions, 13,500 to 50,000 CAD deaths annually could be avoided.
Abstract: Objective. —To determine the risk of elevated total homocysteine (tHcy) levels for arteriosclerotic vascular disease, estimate the reduction of tHcy by folic acid, and calculate the potential reduction of coronary artery disease (CAD) mortality by increasing folic acid intake. Data Sources. —MEDLINE search for meta-analysis of 27 studies relating homocysteine to arteriosclerotic vascular disease and 11 studies of folic acid effects on tHcy levels. Study Selection and Data Extraction. —Studies dealing with CAD, cerebrovascular disease, and peripheral arterial vascular disease were selected. Three prospective and six population-based case-control studies were considered of high quality. Five cross-sectional and 13 other case-control studies were also included. Causality of tHcy's role in the pathogenesis of vascular disease was inferred because of consistency across studies by different investigators using different methods in different populations. Data Synthesis. —Elevations in tHcy were considered an independent graded risk factor for arteriosclerotic vascular diseases. The odds ratio (OR) for CAD of a 5-μmol/L tHcy increment is 1.6(95% confidence interval [Cl], 1.4 to 1.7) for men and 1.8 (95% Cl, 1.3 to 1.9) for women. A total of 10% of the population's CAD risk appears attributable to tHcy. The OR for cerebrovascular disease (5-μmol/L tHcy increment) is 1.5 (95% Cl, 1.3 to 1.9). Peripheral arterial disease also showed a strong association. Increased folic acid intake (approximately 200 μg/d) reduces tHcy levels by approximately 4 μmol/L. Assuming that lower tHcy levels decrease CAD mortality, we calculated the effect of (1) increased dietary folate, (2) supplementation by tablets, and (3) grain fortification. Under different assumptions, 13 500 to 50 000 CAD deaths annually could be avoided; fortification of food had the largest impact. Conclusions. —A 5-μmol/L tHcy increment elevates CAD risk by as much as cholesterol increases of 0.5 mmol/L (20 mg/dL). Higher folic acid intake by reducing tHcy levels promises to prevent arteriosclerotic vascular disease. Clinical trials are urgently needed. Concerns about masking cobalamin deficiency by folic acid could be lessened by adding 1 mg of cobalamin to folic acid supplements. ( JAMA . 1995;274:1049-1057)

3,722 citations

Journal ArticleDOI
TL;DR: In this article, an elevated level of total homocysteine (tHcy) in blood, denoted hyperhomocysteinemia, is emerging as a prevalent and strong risk factor for atherosclerotic vascular disease in the coronary, cerebral, and peripheral vessels, and for arterial and venous thromboembolism.
Abstract: An elevated level of total homocysteine (tHcy) in blood, denoted hyperhomocysteinemia, is emerging as a prevalent and strong risk factor for atherosclerotic vascular disease in the coronary, cerebral, and peripheral vessels, and for arterial and venous thromboembolism. The basis for these conclusions is data from about 80 clinical and epidemiological studies including more than 10,000 patients. Elevated tHcy confers a graded risk with no threshold, is independent of but may enhance the effect of the conventional risk factors, and seems to be a particularly strong predictor of cardiovascular mortality. Hyperhomocysteinemia is attributed to commonly occurring genetic and acquired factors including deficiencies of folate and vitamin B12. Supplementation with B-vitamins, in particular with folic acid, is an efficient, safe, and inexpensive means to reduce an elevated tHcy level. Studies are now in progress to establish whether such therapy will reduce cardiovascular risk.

2,099 citations

Journal ArticleDOI
TL;DR: In 1969, McCully reported autopsy evidence of extensive arterial thrombosis and atherosclerosis in two children with elevated plasma homocyst(e)ine concentrations and homocysteine thiolactone, and it has recently become clear that hyperhomocyst (e)inemia is an independent risk factor.
Abstract: In 1969, McCully made the clinical observation linking elevated plasma homocyst(e)ine concentrations with vascular disease.1 He reported autopsy evidence of extensive arterial thrombosis and atherosclerosis in two children with elevated plasma homocyst(e)ine concentrations and homocystinuria. On the basis of this observation, he proposed that elevated plasma homocyst(e)ine (hyperhomocyst(e)inemia) can cause atherosclerotic vascular disease. The term “homocyst(e)ine” is used to define the combined pool of homocysteine, homocystine, mixed disulfides involving homocysteine, and homocysteine thiolactone found in the plasma of patients with hyperhomocyst(e)inemia. Subsequent investigations have confirmed McCully's hypothesis, and it has recently become clear that hyperhomocyst(e)inemia is an independent risk factor . . .

1,981 citations

Journal ArticleDOI
23 Oct 2002-JAMA
TL;DR: This meta-analysis of observational studies suggests that elevated homocysteine is at most a modest independent predictor of IHD and stroke risk in healthy populations.
Abstract: CONTEXT: It has been suggested that total blood homocysteine concentrations are associated with the risk of ischemic heart disease (IHD) and stroke. OBJECTIVE: To assess the relationship of homocysteine concentrations with vascular disease risk. DATA SOURCES: MEDLINE was searched for articles published from January 1966 to January 1999. Relevant studies were identified by systematic searches of the literature for all reported observational studies of associations between IHD or stroke risk and homocysteine concentrations. Additional studies were identified by a hand search of references of original articles or review articles and by personal communication with relevant investigators. STUDY SELECTION: Studies were included if they had data available by January 1999 on total blood homocysteine concentrations, sex, and age at event. Studies were excluded if they measured only blood concentrations of free homocysteine or of homocysteine after a methionine-loading test or if relevant clinical data were unavailable or incomplete. DATA EXTRACTION: Data from 30 prospective or retrospective studies involving a total of 5073 IHD events and 1113 stroke events were included in a meta-analysis of individual participant data, with allowance made for differences between studies, for confounding by known cardiovascular risk factors, and for regression dilution bias. Combined odds ratios (ORs) for the association of IHD and stroke with blood homocysteine concentrations were obtained by using conditional logistic regression. DATA SYNTHESIS: Stronger associations were observed in retrospective studies of homocysteine measured in blood collected after the onset of disease than in prospective studies among individuals who had no history of cardiovascular disease when blood was collected. After adjustment for known cardiovascular risk factors and regression dilution bias in the prospective studies, a 25% lower usual (corrected for regression dilution bias) homocysteine level (about 3 micromol/L [0.41 mg/L]) was associated with an 11% (OR, 0.89; 95% confidence interval [CI], 0.83-0.96) lower IHD risk and 19% (OR, 0.81; 95% CI, 0.69-0.95) lower stroke risk. CONCLUSIONS: This meta-analysis of observational studies suggests that elevated homocysteine is at most a modest independent predictor of IHD and stroke risk in healthy populations. Studies of the impact on disease risk of genetic variants that affect blood homocysteine concentrations will help determine whether homocysteine is causally related to vascular disease, as may large randomized trials of the effects on IHD and stroke of vitamin supplementation to lower blood homocysteine concentrations.

1,953 citations