scispace - formally typeset
Search or ask a question
Author

G. J. Lake

Other affiliations: University of Akron
Bio: G. J. Lake is an academic researcher from The Hertz Corporation. The author has contributed to research in topics: Natural rubber & Tearing. The author has an hindex of 9, co-authored 10 publications receiving 1072 citations. Previous affiliations of G. J. Lake include University of Akron.

Papers
More filters
Journal ArticleDOI
Abstract: Under repeated stressing, cracks in a specimen of vulcanized rubber may propagate and lead to failure. It has been found, however, that below a critical severity of strain no propagation occurs in the absence of chemical corrosion. This severity defines a fatigue limit for repeated stressing below which the life can be virtually indefinite. It can be expressed as the energy per unit area required to produce new surface ( T 0 ), and is about 5 x 10 4 erg/cm 2 . In contrast with gross strength properties such as tear and tensile strength, T 0 does not correlate with the viscoelastic behaviour of the material and varies only relatively slightly with chemical structure. It is shown that T 0 can be calculated approximately by considering the energy required to rupture the polymer chains lying across the path of the crack. This energy is calculated from the strengths of the chemical bonds, secondary forces being ignored. Theory and experiment agree within a factor of 2. Reasons why T 0 and the gross strength properties are influenced by different aspects of the structure of the material are discussed.

691 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the dynamic cut growth behavior of vulcanized rubbers and show that there is a minimum tearing energy at which mechanical rupture of chains occurs, which is in the region of 0.05 kg/cm.
Abstract: Investigations of the dynamic cut growth behavior of vulcanized rubbers indicate that there is a minimum tearing energy at which mechanical rupture of chains occurs. The limiting value is characteristic of each vulcanizate, but is in the region of 0.05 kg./cm. The mechanical fatigue limit, below which the number of cycles to failure increases rapidly, is accurately predicted from this critical tearing energy. Characteristics of cut growth at low tearing energies, and effects of polymer, vulcanizing system, oxygen, and fillers on the critical tearing energy and fatigue limit are discussed.

234 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that a gum vulcanizate of non-crystallizing SBR exhibits cut growth under both static and dynamic conditions; in each case the rate is approximately proportional to the fourth power of the tearing energy.
Abstract: Tensile fatigue failure of a gum vulcanizate of noncrystallizing SBR can be accounted for by the growth of small flaws initially present in the rubber. Fatigue of crystallizing natural rubber was shown in Part I to be attributable to the same cause. Cut growth results are interpreted in terms of the tearing energy theory of Rivlin and Thomas. SBR exhibits cut growth under both static and dynamic conditions; in each case the rate is approximately proportional to the fourth power of the tearing energy. Variation of the dynamic cut growth rate with frequency can be explained by the summation of a timedependent static component of growth and a cyclic component not dissimilar to that occurring in natural rubber. Fatigue failure, under both static and dynamic conditions, is predicted from the cut growth results. These predictions are found to account quantitatively for experimentally observed fatigue lives when a suitable value is assumed for the initial flaw size. Fatigue lives at different temperatures correlate well with cut growth results obtained by Greensmith and Thomas over the same temperature range. The results are compared to those obtained previously for natural rubber, and possible reasons for the differences in fatigue behavior of crystallizing and noncrystallizing rubbers are discussed.

131 citations

Journal ArticleDOI
TL;DR: In this article, a fracture mechanics approach, based on the elastic energy available for crack propagation, enables the crack growth and fatigue behavior to be interrelated quantitatively and is helpful from both basic and applied viewpoints.
Abstract: Fatigue failure of rubber under repeated loading is reviewed. The process considered is that occurring in the absence of appreciable temperature rise as a result of the development of one or more cracks. A fracture mechanics approach, based on the elastic energy available for crack propagation, enables the crack growth and fatigue behavior to be interrelated quantitatively and is helpful from both basic and applied viewpoints. Initiation of mechanical crack growth is governed by a critical value of the available energy, which is of similar magnitude for various elastomers and can be related approximately to the primary bond strength and molecular structure. Once this value is exceeded, the characteristics of growth vary markedly for different elastomers and appear to be influenced primarily by the elastic hysteresis of the rubber at high strains. Although the mechanical deformations are the basic driving force, the crack growth and fatigue behavior can also be strongly affected by atmospheric oxy...

50 citations

Journal ArticleDOI
TL;DR: In this article, a study of fracture in two-ply rubber composites subjected to repeated tensile deformations is presented, showing that failure occurs mainly because of the growth of cracks between the plies.
Abstract: This paper describes a study of fracture in two-ply rubber—cord composites subjected to repeated tensile deformations. Under the conditions used, failure occurs predominantly because of the growth of cracks between the plies. A fracture mechanics approach enables the rate of crack growth to be predicted in terms of the elastic properties and dimensions of the laminate, the magnitude of the deformations and the basic crack growth characteristics of the ply rubber. The theory indicates the growth rate to be determined by the strain energy released from the central region of the laminate and to be independent of crack length once this exceeds a small value. The latter feature has been verified experimentally and the magnitudes of the observed crack growth rates are in reasonable agreement with those predicted for various deformation cycles.

30 citations


Cited by
More filters
Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks is reported, finding that these gels’ toughness is attributed to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping thenetwork of ionic crosslinks.
Abstract: Hydrogels with improved mechanical properties, made by combining polymer networks with ionic and covalent crosslinks, should expand the scope of applications, and may serve as model systems to explore mechanisms of deformation and energy dissipation. Hydrogels are used in flexible contact lenses, as scaffolds for tissue engineering and in drug delivery. Their poor mechanical properties have so far limited the scope of their applications, but new strong and stretchy materials reported here could take hydrogels into uncharted territories. The new system involves a double-network gel, with one network forming ionic crosslinks and the other forming covalent crosslinks. The fracture energy of these materials is very high: they can stretch to beyond 17 times their own length even when containing defects that usually initiate crack formation in hydrogels. The materials' toughness is attributed to crack bridging by the covalent network accompanied by energy dissipation through unzipping of the ionic crosslinks in the second network. Hydrogels are used as scaffolds for tissue engineering1, vehicles for drug delivery2, actuators for optics and fluidics3, and model extracellular matrices for biological studies4. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour5. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels6,7 have achieved stretches in the range 10–20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m−2 (ref. 8), as compared with ∼1,000 J m−2 for cartilage9 and ∼10,000 J m−2 for natural rubbers10. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties11,12,13,14,15,16,17,18; certain synthetic gels have reached fracture energies of 100–1,000 J m−2 (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m−2. Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels’ toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.

3,856 citations

Journal ArticleDOI
TL;DR: This Review discusses how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation, and collects experimental release data from the literature and presents quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Abstract: Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

2,457 citations

Book
01 Jan 1971
TL;DR: A concise, self-contained introduction to solid polymers, the mechanics of their behavior and molecular and structural interpretations can be found in this article, which provides extended coverage of recent developments in rubber elasticity, relaxation transitions, non-linear viscoelastic behavior, anisotropic mechanical behavior, yield behavior of polymers and other fields.
Abstract: A concise, self-contained introduction to solid polymers, the mechanics of their behavior and molecular and structural interpretations. This updated edition provides extended coverage of recent developments in rubber elasticity, relaxation transitions, non-linear viscoelastic behavior, anisotropic mechanical behavior, yield behavior of polymers, breaking phenomena, and other fields.

2,335 citations

Journal ArticleDOI
TL;DR: In this article, double-network gels are characterized by a special network structure consisting of two types of polymer components with opposite physical natures: the minor component is abundantly crosslinked polyelectrolytes (rigid skeleton) and the major component comprises of poorly cross-linked neutral polymers (ductile substance).
Abstract: Double-network (DN) gels have drawn much attention as an innovative material having both high water content (ca. 90 wt%) and high mechanical strength and toughness. DN gels are characterized by a special network structure consisting of two types of polymer components with opposite physical natures: the minor component is abundantly cross-linked polyelectrolytes (rigid skeleton) and the major component comprises of poorly cross-linked neutral polymers (ductile substance). The former and the latter components are referred to as the first network and the second network, respectively, since the synthesis should be done in this order to realize high mechanical strength. For DN gels synthesized under suitable conditions (choice of polymers, feed compositions, atmosphere for reaction, etc.), they possess hardness (elastic modulus of 0.1–1.0 MPa), strength (failure tensile nominal stress 1–10 MPa, strain 1000–2000%; failure compressive nominal stress 20–60 MPa, strain 90–95%), and toughness (tearing fracture energy of 100∼1000 J m−2). These excellent mechanical performances are comparable to that of rubbers and soft load-bearing bio-tissues. The mechanical behaviors of DN gels are inconsistent with general mechanisms that enhance the toughness of soft polymeric materials. Thus, DN gels present an interesting and challenging problem in polymer mechanics. Extensive experimental and theoretical studies have shown that the toughening of DN gel is based on a local yielding mechanism, which has some common features with other brittle and ductile nano-composite materials, such as bones and dentins.

1,652 citations

Journal ArticleDOI
Xuanhe Zhao1
TL;DR: It is shown that tough hydrogels generally possess mechanisms to dissipate substantial mechanical energy but still maintain high elasticity under deformation, and a particularly promising strategy for the design is to implement multiple mechanisms across multiple length scales into nano-, micro-, meso-, and macro-structures of hydrogel.
Abstract: As swollen polymer networks in water, hydrogels are usually brittle. However, hydrogels with high toughness play critical roles in many plant and animal tissues as well as in diverse engineering applications. Here we review the intrinsic mechanisms of a wide variety of tough hydrogels developed over the past few decades. We show that tough hydrogels generally possess mechanisms to dissipate substantial mechanical energy but still maintain high elasticity under deformation. The integrations and interactions of different mechanisms for dissipating energy and maintaining elasticity are essential to the design of tough hydrogels. A matrix that combines various mechanisms is constructed for the first time to guide the design of next-generation tough hydrogels. We further highlight that a particularly promising strategy for the design is to implement multiple mechanisms across multiple length scales into nano-, micro-, meso-, and macro-structures of hydrogels.

880 citations