scispace - formally typeset
Search or ask a question
Author

G. Julius Vancso

Bio: G. Julius Vancso is an academic researcher from University of Twente. The author has contributed to research in topics: Polymer & Force spectroscopy. The author has an hindex of 55, co-authored 260 publications receiving 9687 citations. Previous affiliations of G. Julius Vancso include Donghua University & Agency for Science, Technology and Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of methods to obtain well-defined polymer-quantum dot hybrid materials with tunable optical properties is an active field of research as mentioned in this paper, and many of these applications require a combination of the QDs with polymers.

322 citations

Journal ArticleDOI
01 Feb 2004-Langmuir
TL;DR: Chemical force microscopy in water was used to map the surface hydrophobicity of UV/ozone-treated poly(dimethylsiloxane) (PDMS) as a function of the storage/recovery time, providing new insights into the lateral homogeneity of oxidized PDMS with a resolution in the sub-50-nm range.
Abstract: Chemical force microscopy (CFM) in water was used to map the surface hydrophobicity of UV/ozone-treated poly(dimethylsiloxane) (PDMS; Sylgard 184) as a function of the storage/recovery time In addition to CFM pull-off force mapping, we applied indentation mapping to probe the changes in the normalized modulus These experiments were complemented by results on surface properties assessed on the micrometer scale by X-ray photoelectron spectroscopy and water contact-angle measurements Exposure times of <_30 min resulted in laterally homogeneously oxidized surfaces, which are characterized by an increased modulus and a high segmental mobility of PDMS As detected on a sub-50-nm level, the subsequent "hydrophobic recovery" was characterized by a gradual increase in the pull-off forces and a decrease in the normalized modulus, approaching the values of unexposed PDMS after 8-50 days Lateral imaging on briefly exposed PDMS showed the appearance of liquid PDMS in the form of droplets with an increasing recovery time Longer exposure times (60 min) led to the formation of a hydrophilic silica-like surface layer Under these conditions, a gradual surface reconstruction within the silica-like layer occurred with time after exposure, where a hydrophilic SiOx-enriched phase formed <100-nm-sized domains, surrounded by a more hydrophobic matrix with lower normalized modulus These results provide new insights into the lateral homogeneity of oxidized PDMS with a resolution in the sub-50-nm range

305 citations

Journal ArticleDOI
TL;DR: In this paper, the authors applied the Johnson-Kendall-Roberts (JKR) contact mechanics approach to investigate poly(dimethylsiloxane) (PDMS) samples prior to and following UV/ozone surface treatment.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the electrospinning technique was used to spin ultra-thin fibers from several polymer/solvent systems, ranging from 16 nm to 2 μm, and the morphology of these fibers was investigated with an atomic force microscope (AFM) and an optical microscope.
Abstract: The electrospinning technique was used to spin ultra-thin fibers from several polymer/solvent systems. The diameter of the electrospun fibers ranged from 16 nm to 2 μm. The morphology of these fibers was investigated with an atomic force microscope (AFM) and an optical microscope. Polyethylene oxide) (PEO) dissolved in water or chloroform was studied in greater detail. PEO fibers spun from aqueous solution show a “beads on a string” morphology. An AFM study showed that the surface of these fibers is highly ordered. The “beads on a string” morphology can be avoided if PEO is spun from solution in chloroform; the resulting fibers show a lamellar morphology. Polyvinylalcohol (PVA) dissolved in water and cellulose acetate dissolved in acetone were additional polymer/solvent systems which were investigated. Furthermore, the electrospinning process was studied: different experimental lay-outs were tested, electrostatic fields were simulated, and voltage - current characteristics of the electrospinning process were recorded.

207 citations

Journal ArticleDOI
TL;DR: It is shown that surface nanobubbles, present on these surfaces, do not act as nucleation sites for cavitation bubbles, in contrast to the expectation, which implies that surface Nanobubble are not just stable under ambient conditions but also under enormous reduction of the liquid pressure down to -6 MPa.
Abstract: Shock wave induced cavitation experiments and atomic force microscopy measurements of flat polyamide and hydrophobized silicon surfaces immersed in water are performed. It is shown that surface nanobubbles, present on these surfaces, do not act as nucleation sites for cavitation bubbles, in contrast to the expectation. This implies that surface nanobubbles are not just stable under ambient conditions but also under enormous reduction of the liquid pressure down to -6 MPa. We denote this feature as superstability.

203 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

3,833 citations

Journal ArticleDOI
TL;DR: This work presents a meta-analysis of the literature on food quality and safety analysis and its applications in the context of veterinary drugs and drugs and drug-Induced Antibodies, which focuses on the role of canine coronavirus in the veterinary industry.
Abstract: 5.1. Detection Formats 475 5.2. Food Quality and Safety Analysis 477 5.2.1. Pathogens 477 5.2.2. Toxins 479 5.2.3. Veterinary Drugs 479 5.2.4. Vitamins 480 5.2.5. Hormones 480 5.2.6. Diagnostic Antibodies 480 5.2.7. Allergens 481 5.2.8. Proteins 481 5.2.9. Chemical Contaminants 481 5.3. Medical Diagnostics 481 5.3.1. Cancer Markers 481 5.3.2. Antibodies against Viral Pathogens 482 5.3.3. Drugs and Drug-Induced Antibodies 483 5.3.4. Hormones 483 5.3.5. Allergy Markers 483 5.3.6. Heart Attack Markers 484 5.3.7. Other Molecular Biomarkers 484 5.4. Environmental Monitoring 484 5.4.1. Pesticides 484 5.4.2. 2,4,6-Trinitrotoluene (TNT) 485 5.4.3. Aromatic Hydrocarbons 485 5.4.4. Heavy Metals 485 5.4.5. Phenols 485 5.4.6. Polychlorinated Biphenyls 487 5.4.7. Dioxins 487 5.5. Summary 488 6. Conclusions 489 7. Abbreviations 489 8. Acknowledgment 489 9. References 489

3,698 citations