scispace - formally typeset
Search or ask a question
Author

G.K Williamson

Bio: G.K Williamson is an academic researcher from University of Birmingham. The author has contributed to research in topics: Yield (engineering) & Solid solution. The author has an hindex of 3, co-authored 3 publications receiving 6821 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a Geiger counter spectrometer to measure the changes in intensity distribution in the spectra of cold worked aluminium and wolfram and found that the line breadths may be attributed to simultaneous small particle size and strain broadening, the latter predominating at the higher Bragg angles.

7,802 citations

Journal ArticleDOI
TL;DR: In this paper, the progress with temperature of the crystallographic transformations in indium-thallium (f.c.c., c a & > 1/agf) solid solutions has been studied using polycrystalline specimens.

45 citations

Journal ArticleDOI
TL;DR: In this paper, the dislocation theory of the yield point was used to compare the tensile behaviour of some aluminium alloy single crystals which contained copper, zinc, or hydrogen, with that of superpure aluminium crystals.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present methods of severe plastic deformation and formation of nanostructures, including Torsion straining under high pressure, ECA pressing, and multiple forging.

5,763 citations

Journal ArticleDOI
TL;DR: In this article, two basic equations are derived for deducing the dislocation density in powdered materials from the particle size and strain breadth measured from the Debye-Schemer spectrum.
Abstract: Two basic equations are derived for deducing the dislocation density in powdered materials from the particle size and strain breadth measured from the Debye-Schemer spectrum. In the particle size estimate, it is assumed that the material has a block structure similar to that found in microbeam studies and that the dislocations lie along the block surfaces. The number of dislocations along each face, n, is not known. In the strain broadening estimate the x-ray line broadening from a dislocation array is calculated in terms of the broadening due to an isolated dislocation and a strain energy factor F, which allows for the effect of dislocation arrangement. Both methods involve an unknown quantity but by equating the two results it is possible in most cases to get both a narrow bracket for the dislocation density and considerable information on the dislocation arrangement. In annealed metals the values of p range from 2 × 107 cm of dislocation line per cm3 for aluminium to 3 × 108 for tungsten and m...

2,306 citations

Journal ArticleDOI
TL;DR: A reversible photo-induced instability has been found in mixed-halide photovoltaic perovskites that limits the open circuit voltage in solar cells.
Abstract: We report on reversible, light-induced transformations in (CH3NH3)Pb(BrxI1−x)3. Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

1,549 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the possibility to precipitate a coherent reinforcing phase in a fcc-FeCoNiCr HEA matrix using minor additions of Ti and Al, and demonstrate that extraordinary balanced tensile properties at room temperature were achieved, which was due to a well combination of various hardening mechanisms, particularly precipitation hardening.

1,486 citations