scispace - formally typeset
Search or ask a question
Author

G. Koltman

Bio: G. Koltman is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Dark matter & Physics. The author has an hindex of 16, co-authored 26 publications receiving 2632 citations.

Papers
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi3, F. Toschi13, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers, F. Agostini2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi, E. Angelino2, E. Angelino7, J. R. Angevaare8, F. Arneodo9, D. Barge, Laura Baudis10, Boris Bauermeister, Lorenzo Bellagamba2, M. L. Benabderrahmane9, T. Berger11, April S. Brown10, Ethan Brown11, S. Bruenner, Giacomo Bruno9, Ran Budnik12, C. Capelli10, João Cardoso6, D. Cichon13, B. Cimmino2, M. Clark14, D. Coderre15, Auke-Pieter Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, A. Depoian14, P. Di Gangi2, A. Di Giovanni9, R. Di Stefano2, Sara Diglio, A. Elykov15, G. Eurin13, A. D. Ferella16, W. Fulgione7, P. Gaemers, R. Gaior, Michelle Galloway10, F. Gao1, L. Grandi, C. Hasterok2, C. Hils4, Katsuki Hiraide17, L. Hoetzsch13, J. Howlett1, M. Iacovacci2, Yoshitaka Itow18, F. Joerg13, N. Kato17, Shingo Kazama18, Masanori Kobayashi1, G. Koltman12, A. Kopec14, H. Landsman12, R. F. Lang14, L. Levinson12, Qing Lin1, Sebastian Lindemann15, Manfred Lindner13, F. Lombardi6, J. Long, J. A. M. Lopes6, E. López Fune, C. Macolino, Joern Mahlstedt, A. Mancuso2, Laura Manenti9, A. Manfredini10, F. Marignetti2, T. Marrodán Undagoitia13, K. Martens17, Julien Masbou, D. Masson15, S. Mastroianni2, M. Messina, Kentaro Miuchi19, K. Mizukoshi19, A. Molinario, K. Morå1, S. Moriyama17, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni20, Uwe Oberlack4, K. Odgers11, J. Palacio13, Bart Pelssers, R. Peres10, J. Pienaar21, V. Pizzella13, Guillaume Plante1, J. Qin14, H. Qiu12, D. Ramírez García15, S. Reichard10, A. Rocchetti15, N. Rupp13, J.M.F. dos Santos6, Gabriella Sartorelli2, N. Šarčević15, M. Scheibelhut4, J. Schreiner13, D. Schulte5, Marc Schumann15, L. Scotto Lavina, M. Selvi2, F. Semeria2, P. Shagin22, E. Shockley21, Manuel Gameiro da Silva6, H. Simgen13, A. Takeda18, C. Therreau, Dominique Thers, F. Toschi15, Gian Carlo Trinchero2, C. Tunnell22, M. Vargas5, G. Volta10, Hongwei Wang23, Yuehuan Wei20, Ch. Weinheimer5, M. Weiss12, D. Wenz4, C. Wittweg5, Z. Xu1, Masaki Yamashita18, J. Ye20, Guido Zavattini2, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis, Xavier Mougeot 
TL;DR: In this article, the XENON1T data was used for searches for new physics with low-energy electronic recoil data recorded with the Xenon1T detector, which enabled one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter.
Abstract: We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4σ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by gae<3.8×10-12, gaeganeff<4.8×10-18, and gaegaγ<7.7×10-22 GeV-1, and excludes either gae=0 or gaegaγ=gaeganeff=0. The neutrino magnetic moment signal is similarly favored over background at 3.2σ, and a confidence interval of μν∈(1.4,2.9)×10-11 μB (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by β decays of tritium at 3.2σ significance with a corresponding tritium concentration in xenon of (6.2±2.0)×10-25 mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses are decreased to 2.0σ and 0.9σ, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3±0.2) keV (68% C.L.) with a 3.0σ global (4.0σ local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c2. We also consider the possibility that Ar37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar37 concentration can be tightly constrained and is found to be negligible.

452 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi2, E. Angelino7, F. Arneodo8, D. Barge2, Laura Baudis9, Boris Bauermeister2, L. Bellagamba3, M. L. Benabderrahmane8, T. Berger10, P. A. Breur11, April S. Brown9, Ethan Brown10, S. Bruenner12, Giacomo Bruno8, Ran Budnik13, C. Capelli9, João Cardoso6, D. Cichon12, D. Coderre14, Auke-Pieter Colijn11, Jan Conrad2, Jean-Pierre Cussonneau15, M. P. Decowski11, P. de Perio1, A. Depoian16, P. Di Gangi3, A. Di Giovanni8, Sara Diglio15, A. Elykov14, G. Eurin12, J. Fei17, A. D. Ferella2, A. Fieguth5, W. Fulgione7, P. Gaemers11, A. Gallo Rosso, Michelle Galloway9, F. Gao1, M. Garbini3, L. Grandi18, Z. Greene1, C. Hasterok12, C. Hils4, E. Hogenbirk11, J. Howlett1, M. Iacovacci, R. Itay13, F. Joerg12, Shingo Kazama19, A. Kish9, Masanori Kobayashi1, G. Koltman13, A. Kopec16, H. Landsman13, R. F. Lang16, L. Levinson13, Qing Lin1, Sebastian Lindemann14, Manfred Lindner12, F. Lombardi6, F. Lombardi17, J. A. M. Lopes6, E. López Fune20, C. Macolino21, J. Mahlstedt2, A. Manfredini13, A. Manfredini9, Fabrizio Marignetti, T. Marrodán Undagoitia12, Julien Masbou15, S. Mastroianni, M. Messina8, K. Micheneau15, Kate C. Miller18, A. Molinario, K. Morå2, Y. Mosbacher13, M. Murra5, J. Naganoma22, Kaixuan Ni17, Uwe Oberlack4, K. Odgers10, J. Palacio15, Bart Pelssers2, R. Peres9, J. Pienaar18, V. Pizzella12, Guillaume Plante1, R. Podviianiuk, J. Qin16, H. Qiu13, D. Ramírez García14, S. Reichard9, B. Riedel18, A. Rocchetti14, N. Rupp12, J.M.F. dos Santos6, Gabriella Sartorelli3, N. Šarčević14, M. Scheibelhut4, S. Schindler4, J. Schreiner12, D. Schulte5, Marc Schumann14, L. Scotto Lavina20, M. Selvi3, P. Shagin22, E. Shockley18, Manuel Gameiro da Silva6, H. Simgen12, C. Therreau15, Dominique Thers15, F. Toschi14, Gian Carlo Trinchero7, C. Tunnell22, N. Upole18, M. Vargas5, G. Volta9, O. Wack12, Hongwei Wang23, Yuehuan Wei17, Ch. Weinheimer5, D. Wenz4, C. Wittweg5, J. Wulf9, J. Ye17, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis20 
TL;DR: Constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment are reported, and no DM or CEvNS detection may be claimed because the authors cannot model all of their backgrounds.
Abstract: We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe 30 MeV/c2, and absorption of dark photons and axionlike particles for mχ within 0.186–1 keV/c2.

412 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, V. C. Antochi2, F. Arneodo7, Laura Baudis8, Boris Bauermeister2, M. L. Benabderrahmane7, T. Berger9, P. A. Breur10, April S. Brown8, Ethan Brown9, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn10, Jan Conrad2, Jean-Pierre Cussonneau14, M. P. Decowski10, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella2, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, L. Grandi16, Z. Greene1, C. Hasterok11, E. Hogenbirk10, J. Howlett1, M. Iacovacci, R. Itay12, F. Joerg11, Shingo Kazama17, A. Kish8, G. Koltman12, A. Kopec18, H. Landsman12, R. F. Lang18, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, E. López Fune19, C. Macolino20, J. Mahlstedt2, A. Manfredini8, Fabrizio Marignetti, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson18, S. Mastroianni, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå2, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni15, Uwe Oberlack4, K. Odgers9, Bart Pelssers2, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, H. Qiu12, D. Ramírez García13, S. Reichard8, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, N. Šarčević13, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin21, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, C. Therreau14, Dominique Thers14, F. Toschi13, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang22, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, D. Wenz4, C. Wittweg5, J. Wulf8, Z. Xu15, J. Ye15, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis19 
TL;DR: The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases and sets exclusion limits on the WIMP-nucleon interactions.
Abstract: We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3×10-42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.

241 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi2, E. Angelino7, J. R. Angevaare8, F. Arneodo9, D. Barge2, Laura Baudis10, Boris Bauermeister2, L. Bellagamba3, M. L. Benabderrahmane9, T. Berger11, April S. Brown10, Ethan Brown11, S. Bruenner8, Giacomo Bruno9, Ran Budnik12, C. Capelli10, João Cardoso6, D. Cichon13, B. Cimmino, M. Clark14, D. Coderre15, Auke-Pieter Colijn8, Jan Conrad2, Jean-Pierre Cussonneau16, M. P. Decowski8, A. Depoian14, P. Di Gangi3, A. Di Giovanni9, R. Di Stefano, Sara Diglio16, A. Elykov15, G. Eurin13, A. D. Ferella17, W. Fulgione7, P. Gaemers8, R. Gaior18, Michelle Galloway10, F. Gao1, L. Grandi19, C. Hasterok13, C. Hils4, Katsuki Hiraide20, L. Hoetzsch13, J. Howlett1, M. Iacovacci, Yoshitaka Itow21, F. Joerg13, N. Kato20, Shingo Kazama21, Masanori Kobayashi1, G. Koltman12, A. Kopec14, H. Landsman12, R. F. Lang14, L. Levinson12, Qing Lin1, Sebastian Lindemann15, Manfred Lindner13, F. Lombardi6, J. Long19, J. A. M. Lopes6, E. López Fune18, C. Macolino22, J. Mahlstedt2, A. Mancuso3, Laura Manenti9, A. Manfredini10, Fabrizio Marignetti, T. Marrodán Undagoitia13, K. Martens20, Julien Masbou16, D. Masson15, S. Mastroianni, M. Messina, Kentaro Miuchi23, Keita Mizukoshi23, A. Molinario, K. Morå1, K. Morå2, Shigetaka Moriyama20, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni24, Uwe Oberlack4, K. Odgers11, J. Palacio16, J. Palacio13, Bart Pelssers2, R. Peres10, J. Pienaar19, V. Pizzella13, Guillaume Plante1, J. Qin14, H. Qiu12, D. Ramírez García15, S. Reichard10, A. Rocchetti15, N. Rupp13, J.M.F. dos Santos6, G. Sartorelli3, N. Šarčević15, M. Scheibelhut4, Jochen Schreiner13, D. Schulte5, Marc Schumann15, L. Scotto Lavina18, M. Selvi3, F. Semeria3, P. Shagin25, E. Shockley19, Manuel Gameiro da Silva6, Hardy Simgen13, Atsushi Takeda20, C. Therreau16, D. Thers16, F. Toschi15, Gian Carlo Trinchero7, C. Tunnell25, Kathrin Valerius26, M. Vargas5, G. Volta10, Han Wang27, Yuehuan Wei24, Ch. Weinheimer5, M. Weiss12, D. Wenz4, C. Wittweg5, Z. Xu1, Masaki Yamashita20, Masaki Yamashita21, J. Ye24, G. Zavattini3, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis18 
TL;DR: In this paper, the authors predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs) in a 4 t fiducial mass.
Abstract: XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48 cm2 (5.0×10−48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43 cm2 (6.0×10−42 cm2).

191 citations


Cited by
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers, F. Agostini2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi, E. Angelino2, E. Angelino7, J. R. Angevaare8, F. Arneodo9, D. Barge, Laura Baudis10, Boris Bauermeister, Lorenzo Bellagamba2, M. L. Benabderrahmane9, T. Berger11, April S. Brown10, Ethan Brown11, S. Bruenner, Giacomo Bruno9, Ran Budnik12, C. Capelli10, João Cardoso6, D. Cichon13, B. Cimmino2, M. Clark14, D. Coderre15, Auke-Pieter Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, A. Depoian14, P. Di Gangi2, A. Di Giovanni9, R. Di Stefano2, Sara Diglio, A. Elykov15, G. Eurin13, A. D. Ferella16, W. Fulgione7, P. Gaemers, R. Gaior, Michelle Galloway10, F. Gao1, L. Grandi, C. Hasterok2, C. Hils4, Katsuki Hiraide17, L. Hoetzsch13, J. Howlett1, M. Iacovacci2, Yoshitaka Itow18, F. Joerg13, N. Kato17, Shingo Kazama18, Masanori Kobayashi1, G. Koltman12, A. Kopec14, H. Landsman12, R. F. Lang14, L. Levinson12, Qing Lin1, Sebastian Lindemann15, Manfred Lindner13, F. Lombardi6, J. Long, J. A. M. Lopes6, E. López Fune, C. Macolino, Joern Mahlstedt, A. Mancuso2, Laura Manenti9, A. Manfredini10, F. Marignetti2, T. Marrodán Undagoitia13, K. Martens17, Julien Masbou, D. Masson15, S. Mastroianni2, M. Messina, Kentaro Miuchi19, K. Mizukoshi19, A. Molinario, K. Morå1, S. Moriyama17, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni20, Uwe Oberlack4, K. Odgers11, J. Palacio13, Bart Pelssers, R. Peres10, J. Pienaar21, V. Pizzella13, Guillaume Plante1, J. Qin14, H. Qiu12, D. Ramírez García15, S. Reichard10, A. Rocchetti15, N. Rupp13, J.M.F. dos Santos6, Gabriella Sartorelli2, N. Šarčević15, M. Scheibelhut4, J. Schreiner13, D. Schulte5, Marc Schumann15, L. Scotto Lavina, M. Selvi2, F. Semeria2, P. Shagin22, E. Shockley21, Manuel Gameiro da Silva6, H. Simgen13, A. Takeda18, C. Therreau, Dominique Thers, F. Toschi15, Gian Carlo Trinchero2, C. Tunnell22, M. Vargas5, G. Volta10, Hongwei Wang23, Yuehuan Wei20, Ch. Weinheimer5, M. Weiss12, D. Wenz4, C. Wittweg5, Z. Xu1, Masaki Yamashita18, J. Ye20, Guido Zavattini2, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis, Xavier Mougeot 
TL;DR: In this article, the XENON1T data was used for searches for new physics with low-energy electronic recoil data recorded with the Xenon1T detector, which enabled one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter.
Abstract: We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4σ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by gae<3.8×10-12, gaeganeff<4.8×10-18, and gaegaγ<7.7×10-22 GeV-1, and excludes either gae=0 or gaegaγ=gaeganeff=0. The neutrino magnetic moment signal is similarly favored over background at 3.2σ, and a confidence interval of μν∈(1.4,2.9)×10-11 μB (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by β decays of tritium at 3.2σ significance with a corresponding tritium concentration in xenon of (6.2±2.0)×10-25 mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses are decreased to 2.0σ and 0.9σ, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3±0.2) keV (68% C.L.) with a 3.0σ global (4.0σ local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c2. We also consider the possibility that Ar37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar37 concentration can be tightly constrained and is found to be negligible.

452 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi2, E. Angelino7, F. Arneodo8, D. Barge2, Laura Baudis9, Boris Bauermeister2, L. Bellagamba3, M. L. Benabderrahmane8, T. Berger10, P. A. Breur11, April S. Brown9, Ethan Brown10, S. Bruenner12, Giacomo Bruno8, Ran Budnik13, C. Capelli9, João Cardoso6, D. Cichon12, D. Coderre14, Auke-Pieter Colijn11, Jan Conrad2, Jean-Pierre Cussonneau15, M. P. Decowski11, P. de Perio1, A. Depoian16, P. Di Gangi3, A. Di Giovanni8, Sara Diglio15, A. Elykov14, G. Eurin12, J. Fei17, A. D. Ferella2, A. Fieguth5, W. Fulgione7, P. Gaemers11, A. Gallo Rosso, Michelle Galloway9, F. Gao1, M. Garbini3, L. Grandi18, Z. Greene1, C. Hasterok12, C. Hils4, E. Hogenbirk11, J. Howlett1, M. Iacovacci, R. Itay13, F. Joerg12, Shingo Kazama19, A. Kish9, Masanori Kobayashi1, G. Koltman13, A. Kopec16, H. Landsman13, R. F. Lang16, L. Levinson13, Qing Lin1, Sebastian Lindemann14, Manfred Lindner12, F. Lombardi17, F. Lombardi6, J. A. M. Lopes6, E. López Fune20, C. Macolino21, J. Mahlstedt2, A. Manfredini13, A. Manfredini9, Fabrizio Marignetti, T. Marrodán Undagoitia12, Julien Masbou15, S. Mastroianni, M. Messina8, K. Micheneau15, Kate C. Miller18, A. Molinario, K. Morå2, Y. Mosbacher13, M. Murra5, J. Naganoma22, Kaixuan Ni17, Uwe Oberlack4, K. Odgers10, J. Palacio15, Bart Pelssers2, R. Peres9, J. Pienaar18, V. Pizzella12, Guillaume Plante1, R. Podviianiuk, J. Qin16, H. Qiu13, D. Ramírez García14, S. Reichard9, B. Riedel18, A. Rocchetti14, N. Rupp12, J.M.F. dos Santos6, Gabriella Sartorelli3, N. Šarčević14, M. Scheibelhut4, S. Schindler4, J. Schreiner12, D. Schulte5, Marc Schumann14, L. Scotto Lavina20, M. Selvi3, P. Shagin22, E. Shockley18, Manuel Gameiro da Silva6, H. Simgen12, C. Therreau15, Dominique Thers15, F. Toschi14, Gian Carlo Trinchero7, C. Tunnell22, N. Upole18, M. Vargas5, G. Volta9, O. Wack12, Hongwei Wang23, Yuehuan Wei17, Ch. Weinheimer5, D. Wenz4, C. Wittweg5, J. Wulf9, J. Ye17, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis20 
TL;DR: Constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment are reported, and no DM or CEvNS detection may be claimed because the authors cannot model all of their backgrounds.
Abstract: We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe 30 MeV/c2, and absorption of dark photons and axionlike particles for mχ within 0.186–1 keV/c2.

412 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO4 crystal operated as a cryogenic scintillating calorimeter.
Abstract: The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an Earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this paper we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon (heat) signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at similar to 15 mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160 MeV/c(2).

349 citations