scispace - formally typeset
Search or ask a question
Author

G. Le Lay

Bio: G. Le Lay is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Monolayer & Photoemission spectroscopy. The author has an hindex of 31, co-authored 136 publications receiving 4520 citations. Previous affiliations of G. Le Lay include University of Provence & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an atom-thin, ordered, two-dimensional multi-phase film was grown in situ through germanium molecular beam epitaxy using a gold surface as a substrate.
Abstract: We have grown an atom-thin, ordered, two-dimensional multi-phase film in situ through germanium molecular beam epitaxy using a gold (111) surface as a substrate. Its growth is similar to the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in scanning tunneling microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced density functional theory calculations we can identify it as a ?3????3 R(30?) germanene layer in conjunction with a ?7????7 R(19.1?) Au(111) supercell, presenting compelling evidence of the synthesis of the germanium-based cousin of graphene on gold.

1,230 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic overview of the characteristics of the formation of the noble-metal/elemental-semiconductor interface is given, including growth mechanisms, the structural and energetic properties of the different phases, and the interaction of these interfaces with oxygen is also analyzed.

342 citations

Journal ArticleDOI
TL;DR: In this article, the discovery of silicene in the form of silicon nano-ribbons epitaxially grown on silver (1 1 0) or (1 0 0) surfaces, which paves the way for the growth of graphene-like sheets.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the epitaxial growth of silicene stripes self-aligned in a massively parallel array on the anisotropic silver (110) surface is revealed, revealing a hint of superconductivity.
Abstract: Silicene, a monolayer of silicon atoms tightly packed into a two-dimensional honeycomb lattice, is the challenging hypothetical reflection in the silicon realm of graphene, a one-atom thick graphite sheet, presently the hottest material in condensed matter physics. If existing, it would also reveal a cornucopia of new physics and potential applications. Here, we reveal the epitaxial growth of silicene stripes self-aligned in a massively parallel array on the anisotropic silver (110) surface. This crucial step in the silicene “gold rush” could give a new kick to silicon on the electronics road-map and open the most promising route towards wide-ranging applications. A hint of superconductivity in these silicene stripes poses intriguing questions related to the delicate interplay between paired correlated fermions, massless Dirac fermions and bosonic quasiparticles in low dimensions.

148 citations

Journal ArticleDOI
TL;DR: In this article, a self-assembled array of highly perfect Si nanowires provided a simple, atomically precise, novel template that may impact a wide range of applications, and demonstrated that in the large ensemble each individual nanowire is a well-defined quantum object comprising only two distinct silicon atomic environments.

135 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

4,745 citations

Journal ArticleDOI

3,711 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: In this paper, the basic physical processes involved in the nucleation and growth of thin films of materials on solid surfaces are described, and the relationships between the thermodynamics of adsorption and the kinetics of crystal growth are explored in general terms.
Abstract: The purpose of this article is to describe the basic physical processes involved in the nucleation and growth of thin films of materials on solid surfaces. In this introduction the three modes of crystal growth which are thought to occur on surfaces in the absence of interdiffusion are described, and the relationships between the thermodynamics of adsorption and the kinetics of crystal growth are explored in general terms. This is followed by a brief review of atomistic nucleation theory, explaining the relations of such theories to experimental observables. In the next three sections, recent experimental examples of these three growth modes are given, which are interpreted where possible in terms of nucleation and growth theory. The last section discusses observations on the shapes of growing crystallites and the relation of such observations to nucleation and surface diffusion processes.

2,456 citations