Author
G. Malathi
Other affiliations: Mother Teresa Women's University, Anna University
Bio: G. Malathi is an academic researcher from VIT University. The author has contributed to research in topics: Image quality & Image restoration. The author has an hindex of 4, co-authored 9 publications receiving 72 citations. Previous affiliations of G. Malathi include Mother Teresa Women's University & Anna University.
Papers
More filters
[...]
TL;DR: The characteristics of different quality metrics are concluded and further the quality metric appropriate to various distortions are identified and the proposed quality metric is successfully identified.
Abstract: Objectives: The objective of this paper is to analyze the different image quality metrics by testing and comparing with different distorted set of satellite images. Methods/Statistical Analysis: In this paper, we propose the methods for analyzing the quality of real time images that are corrupted due to different distortions. The several quality metrics are applied and ultimately the best metrics are derived based on the type of degradation. Different metrics such as metric based on single image and metric based on two images have been tested with different real time satellite images from NASA data sets. Findings: This framework will help to identify the metrics in order to prove the proposed filtering schemes that are applied to the corrupted images. Based on the results, we have concluded the characteristics of different quality metrics and further we successfully identified the quality metric appropriate to various distortions. Application/Improvements: The proposed quality metric analysis is used to estimate the performance of any filtering schemes which are used to enhance the quality of any real time images such as remote sensing field.
32 citations
[...]
01 Jan 2011
TL;DR: The ultrasound screening of placenta in the initial stages of gestation helps to identify the complication induced by GDM on the placental development which accounts for the fetal growth.
Abstract: Medical diagnosis is the major challenge faced by the medical experts. Highly specialized tools are necessary to assist the experts in diagnosing the diseases. Gestational Diabetes Mellitus is a condition in pregnant women which increases the blood sugar levels. It complicates the pregnancy by affecting the placental growth. The ultrasound screening of placenta in the initial stages of gestation helps to identify the complication induced by GDM on the placental development which accounts for the fetal growth. This work focus on the classification of ultrasound placenta images into normal and abnormal images based on statistical measurements. The ultrasound images are usually low in resolution which may lead to loss of characteristic features of the ultrasound images. The placenta images obtained in an ultrasound examination is stereo mapped to reconstruct the placenta structure from the ultrasound images. The dimensionality reduction is done on stereo mapped placenta images using wavelet decomposition. The ultrasound placenta image is segmented using watershed approach to obtain the statistical measurements of the stereo mapped placenta images. Using the statistical measurements, the ultrasound placenta images are then classified as normal and abnormal using Back Propagation neural networks.
16 citations
[...]
TL;DR: This pilot study was carried out to find the feasibility for detecting anomalies in placental growth due to the implications of gestational diabetics by considering the stereo image mapping based on wavelet analysis for 2D reconstruction.
Abstract: Medical Diagnosis is the utmost need of an hour. Gestational Diabetics in women represents the second leading cause of yielding children born with birth defects. The ultrasound images are usually low in resolution making diagnosis difficult. Specialized tools are required to assist the medical experts to categorize and diagnose diseases to accuracy. If the anomalies in the ultrasound images are detected in the preliminary screening of placenta, fetal loss could be minimized. This pilot study was carried out to find the feasibility for detecting anomalies in placental growth due to the implications of gestational diabetics by considering the stereo image mapping based on wavelet analysis for 2D reconstruction. The research uses wavelet based methods to extract features from the ultrasonic images of placenta. The shape of the placenta is generated using the Back Propagation Network. Euclidean Distance Classifier is used for classifying the ultrasonic images of placenta.
7 citations
[...]
TL;DR: A hybrid statistical noise suppression technique has been developed for improving the quality of the impulse noisy color images and the performance of the proposed image enhancement scheme is proved using the advanced performance metrics.
Abstract: Image noise is one of the key issues in image processing applications today. The noise will affect the quality of the image and thus degrades the actual information of the image. Visual quality is the prerequisite for many imagery applications such as remote sensing. In recent years, the significance of noise assessment and the recovery of noisy images are increasing. The impulse noise is characterized by replacing a portion of an image’s pixel values with random values Such noise can be introduced due to transmission errors. Accordingly, this paper focuses on the effect of visual quality of the image due to impulse noise during the transmission of images. In this paper, a hybrid statistical noise suppression technique has been developed for improving the quality of the impulse noisy color images. We further proved the performance of the proposed image enhancement scheme using the advanced performance metrics.
6 citations
[...]
TL;DR: The ultrasound screening of placenta in the initial stages of gestation helps to identify the complication induced by GDM on the placental development which accounts for the fetal growth.
Abstract: Medical diagnosis is the major challenge faced by the medical experts. Highly specialized tools are necessary to assist the experts in diagnosing the diseases. Gestational Diabetes Mellitus is a condition in pregnant women which increases the blood sugar levels. It complicates the pregnancy by affecting the placental growth. The ultrasound screening of placenta in the initial stages of gestation helps to identify the complication induced by GDM on the placental development which accounts for the fetal growth. This work focus on the classification of ultrasound placenta images into normal and abnormal images based on statistical measurements. The ultrasound images are usually low in resolution which may lead to loss of characteristic features of the ultrasound images. The placenta images obtained in an ultrasound examination is stereo mapped to reconstruct the placenta structure from the ultrasound images. The dimensionality reduction is done on stereo mapped placenta images using wavelet decomposition. The ultrasound placenta image is segmented using watershed approach to obtain the statistical measurements of the stereo mapped placenta images. Using the statistical measurements, the ultrasound placenta images are then classified as normal and abnormal using Back Propagation neural networks.
4 citations
Cited by
More filters
Proceedings Article•
[...]
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.
1,898 citations
[...]
TL;DR: A novel dictionary training method for sparse reconstruction for enhancing the similarity of sparse representations between the low resolution and high resolution MRI block pairs through simultaneous training two dictionaries.
Abstract: Magnetic Resonance Imaging (MRI) data collection is influenced by SNR, hardware, image time, and other factors. The super-resolution analysis is a critical way to improve the imaging quality. This work presents a framework of super-resolution MRI via sparse reconstruction, and this method is promising to solve the data collection limitations. A novel dictionary training method for sparse reconstruction for enhancing the similarity of sparse representations between the low resolution and high resolution MRI block pairs through simultaneous training two dictionaries. Low resolution MRI blocks generate the high resolution MRI blocks with proposed sparse representation (SR) coefficients. Comprehensive evaluations are implemented to test the feasibility and performance of the SR–MRI method on the real database.
59 citations
[...]
TL;DR: In this article , a compendious review of different medical imaging modalities and evaluation of related multimodal databases along with the statistical results is provided, and the quality assessments fusion metrics are also encapsulated in this article.
Abstract: Over the past two decades, medical imaging has been extensively apply to diagnose diseases. Medical experts continue to have difficulties for diagnosing diseases with a single modality owing to a lack of information in this domain. Image fusion may be use to merge images of specific organs with diseases from a variety of medical imaging systems. Anatomical and physiological data may be included in multi-modality image fusion, making diagnosis simpler. It is a difficult challenge to find the best multimodal medical database with fusion quality evaluation for assessing recommended image fusion methods. As a result, this article provides a complete overview of multimodal medical image fusion methodologies, databases, and quality measurements.In this article, a compendious review of different medical imaging modalities and evaluation of related multimodal databases along with the statistical results is provided. The medical imaging modalities are organized based on radiation, visible-light imaging, microscopy, and multimodal imaging.The medical imaging acquisition is categorized into invasive or non-invasive techniques. The fusion techniques are classified into six main categories: frequency fusion, spatial fusion, decision-level fusion, deep learning, hybrid fusion, and sparse representation fusion. In addition, the associated diseases for each modality and fusion approach presented. The quality assessments fusion metrics are also encapsulated in this article.This survey provides a baseline guideline to medical experts in this technical domain that may combine preoperative, intraoperative, and postoperative imaging, Multi-sensor fusion for disease detection, etc. The advantages and drawbacks of the current literature are discussed, and future insights are provided accordingly.
56 citations
[...]
TL;DR: This review covers state‐of‐the‐art segmentation and classification methodologies for the whole fetus and, more specifically, the fetal brain, lungs, liver, heart and placenta in magnetic resonance imaging and (3D) ultrasound for the first time.
Abstract: Fetal imaging is a burgeoning topic. New advancements in both magnetic resonance imaging and (3D) ultrasound currently allow doctors to diagnose fetal structural abnormalities such as those involved in twin-to-twin transfusion syndrome, gestational diabetes mellitus, pulmonary sequestration and hypoplasia, congenital heart disease, diaphragmatic hernia, ventriculomegaly, etc. Considering the continued breakthroughs in utero image analysis and (3D) reconstruction models, it is now possible to gain more insight into the ongoing development of the fetus. Best prenatal diagnosis performances rely on the conscious preparation of the clinicians in terms of fetal anatomy knowledge. Therefore, fetal imaging will likely span and increase its prevalence in the forthcoming years. This review covers state-of-the-art segmentation and classification methodologies for the whole fetus and, more specifically, the fetal brain, lungs, liver, heart and placenta in magnetic resonance imaging and (3D) ultrasound for the first time. Potential applications of the aforementioned methods into clinical settings are also inspected. Finally, improvements in existing approaches as well as most promising avenues to new areas of research are briefly outlined.
31 citations
Proceedings Article•
[...]
TL;DR: A comprehensive survey on face recognition from practical applications, sensory inputs, methods, and application conditions, and a comprehensive survey of face recognition methods from the viewpoints of signal processing and machine learning.
Abstract: Face recognition has the wide research and applications on many areas. Many surveys of face recognition are implemented. Different from previous surveys on from a single viewpoint of application, method or condition, this paper has a comprehensive survey on face recognition from practical applications, sensory inputs, methods, and application conditions. In the sensory inputs, we review face recognition from image-based, video-based, 3D-based and hypersprectral image based face recognition, and a comprehensive survey of face recognition methods from the viewpoints of signal processing and machine learning are implemented, such as kernel learning, manifold learning method. Moreover we discuss the single training sample based face recognition and under the variable poses. The prominent algorithms are described and critically analyzed, and relevant issues such as data collection, the influence of the small sample size, and system evaluation are discussed
21 citations