scispace - formally typeset
Search or ask a question
Author

G. N. Ramachandran

Bio: G. N. Ramachandran is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Diamond & Birefringence. The author has an hindex of 26, co-authored 89 publications receiving 5960 citations. Previous affiliations of G. N. Ramachandran include University of Madras & University of Chicago.


Papers
More filters
Book ChapterDOI
TL;DR: This chapter considers the parameters that are required for an adequate description of a polypeptide chain and the mathematical method of utilizing these parameters for calculating the coordinates of all the atoms in a suitable frame of reference so that all the interatomic distances, and bond angles, can be calculated and their consequences worked out.
Abstract: Publisher Summary This chapter deals with the recent developments regarding the description and nature of the conformation of proteins and polypeptides with special reference to the stereochemical aspects of the problem. This chapter considers the parameters that are required for an adequate description of a polypeptide chain. This chapter focuses the attention on what may be called “internal parameters”—that is, those which can be defined in terms of the relationships among atoms or units that form the building blocks of the polypeptide chains. This chapter also provides an account of the mathematical method of utilizing these parameters for calculating the coordinates of all the atoms in a suitable frame of reference, so that all the interatomic distances, and bond angles, can be calculated and their consequences worked out. This chapter observes conformations in amino acids, peptides, polypeptides, and proteins.

2,802 citations

Journal ArticleDOI
TL;DR: The theory is compared with all the available crystallographic data on simple (di- and tri-) peptides, cyclic peptide, polypeptide and protein structures, and the observed data fully support the conclusions from theory.

696 citations

BookDOI
01 Jan 1976

280 citations

Journal ArticleDOI
TL;DR: It is proposed that, in addition to stabilizing the collagen triple-helical structure due to the stereochemical properties of the pyrrolidine ring, hydroxyproline gives added stability by the formation of an extra hydrogen bond.

182 citations

Journal ArticleDOI
TL;DR: In this article, a constant-dihedral angle relation for cyclic oligopeptide structures was calculated from conformational theory, using eight examples in which the number of theoretical assumptions were least, and the best values of the coefficients A, B, and C in the expression J(θ) = Acos2θ + B cos θ + Csin2 ǫ + csin2ǫ were found by a least-squares procedure to be 7.9, −1.55, and 1.35.
Abstract: Proton magnetic resonance data and conformational calculations of a series of model compounds containing a NH-CαH group substituted as in peptides have been used to generate a proton–proton coupling constant–dihedral angle relation for the peptide unit. For those substances used in which the dihedral angle about the N-Cα bond is not fixed, the angle distribution was calculated from conformational theory. Using eight examples in which the number of theoretical assumptions were least, the best values of the coefficients A, B, and C in the expression J(θ) = Acos2θ + B cosθ + Csin2θ were found by a least-squares procedure to be 7.9, −1.55, and 1.35, respectively. This relation gives reasonable values for the dihedral angles ϕ in cyclic oligopeptide structures for which the availability of both NMR data and other structural information allow comparison. When applied to N-acetylamino acid N-methylamides having side chains extending beyond Cβ, however, agreement with the calculated conformational distribution was found for Leu, Met, and Trp, but observed values of J were larger than expected for Val, He, Phe, and Tyr, These disagreements are considered to be the result of interactions not yet taken into account in the usual conformational calculations.

162 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Special efforts were made to allow for appropriate display and analysis of the sets of typically 20-40 conformers that are conventionally used to represent the result of an NMR structure determination, using functions for superimposing sets of conformers, calculation of root mean square distance (RMSD) values, identification of hydrogen bonds, and identification and listing of short distances between pairs of hydrogen atoms.

7,111 citations

Journal ArticleDOI
TL;DR: The accessibility of atoms in the twenty common amino acids in model tripeptides of the type Ala-X-Ala are given for defined conformation and the larger non-polar amino acids tend to be more “buried” in the native form of all three proteins.

5,697 citations

Journal ArticleDOI
15 Feb 2003-Proteins
TL;DR: Geometrical validation around the Cα is described, with a new Cβ measure and updated Ramachandran plot, and Favored and allowed ϕ,ψ regions are also defined for Pro, pre‐Pro, and Gly (important because Gly ϕ‐ψ angles are more permissive but less accurately determined).
Abstract: Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage).

3,963 citations

Journal ArticleDOI
TL;DR: To improve the treatment of the peptide backbone, quantum mechanical and molecular mechanical calculations were undertaken on the alanine, glycine, and proline dipeptides, and the results were combined with molecular dynamics simulations of proteins in crystal and aqueous environments to enhance the quality of the CHARMM force field.
Abstract: Computational studies of proteins based on empirical force fields represent a powerful tool to obtain structure-function relationships at an atomic level, and are central in current efforts to solve the protein folding problem. The results from studies applying these tools are, however, dependent on the quality of the force fields used. In particular, accurate treatment of the peptide backbone is crucial to achieve representative conformational distributions in simulation studies. To improve the treatment of the peptide backbone, quantum mechanical (QM) and molecular mechanical (MM) calculations were undertaken on the alanine, glycine, and proline dipeptides, and the results from these calculations were combined with molecular dynamics (MD) simulations of proteins in crystal and aqueous environments. QM potential energy maps of the alanine and glycine dipeptides at the LMP2/cc-pVxZ//MP2/6-31G* levels, where x = D, T, and Q, were determined, and are compared to available QM studies on these molecules. The LMP2/cc-pVQZ//MP2/6-31G* energy surfaces for all three dipeptides were then used to improve the MM treatment of the dipeptides. These improvements included additional parameter optimization via Monte Carlo simulated annealing and extension of the potential energy function to contain peptide backbone phi, psi dihedral crossterms or a phi, psi grid-based energy correction term. Simultaneously, MD simulations of up to seven proteins in their crystalline environments were used to validate the force field enhancements. Comparison with QM and crystallographic data showed that an additional optimization of the phi, psi dihedral parameters along with the grid-based energy correction were required to yield significant improvements over the CHARMM22 force field. However, systematic deviations in the treatment of phi and psi in the helical and sheet regions were evident. Accordingly, empirical adjustments were made to the grid-based energy correction for alanine and glycine to account for these systematic differences. These adjustments lead to greater deviations from QM data for the two dipeptides but also yielded improved agreement with experimental crystallographic data. These improvements enhance the quality of the CHARMM force field in treating proteins. This extension of the potential energy function is anticipated to facilitate improved treatment of biological macromolecules via MM approaches in general.

3,271 citations

Book ChapterDOI
TL;DR: This chapter investigates the anatomy and taxonomy of protein structures, based on the results of three-dimensional X-ray crystallography of globular proteins.
Abstract: Publisher Summary This chapter investigates the anatomy and taxonomy of protein structures. A protein is a polypeptide chain made up of amino acid residues linked together in a definite sequence. Amino acids are “handed,” and naturally occurring proteins contain only L-amino acids. A simple mnemonic for that purpose is the “corncrib.” The sequence of side chains determines all that is unique about a particular protein, including its biological function and its specific three-dimensional structure. The major possible routes to knowledge of three-dimensional protein structure are prediction from the amino acid sequence and analysis of spectroscopic measurements such as circular dichroism, laser Raman spectroscopy, and nuclear magnetic resonance. The analysis and discussion of protein structure is based on the results of three-dimensional X-ray crystallography of globular proteins. The basic elements of protein structures are discussed. The most useful level at which protein structures are to be categorized is the domain, as there are many cases of multiple-domain proteins in which each separate domain resembles other entire smaller proteins. The simplest type of stable protein structure consists of polypeptide backbone wrapped more or less uniformly around the outside of a single hydrophobic core. The outline of the taxonomy is also provided in the chapter.

3,201 citations