scispace - formally typeset
Search or ask a question
Author

G. Nagarajan

Bio: G. Nagarajan is an academic researcher from Sathyabama University. The author has contributed to research in topics: Diesel engine & Diesel fuel. The author has an hindex of 46, co-authored 275 publications receiving 7004 citations. Previous affiliations of G. Nagarajan include KCG College of Technology & College of Engineering, Guindy.


Papers
More filters
Journal ArticleDOI
01 Oct 2009-Energy
TL;DR: In this article, the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine has been experimentally investigated using waste plastic oil as a fuel.
Abstract: Environmental concern and availability of petroleum fuels have caused interests in the search for alternate fuels for internal combustion engines. Waste plastics are indispensable materials in the modern world and application in the industrial field is continually increasing. In this context, waste plastics are currently receiving renewed interest. As an alternative, non-biodegradable, and renewable fuel, waste plastic oil is receiving increasing attention. The waste plastic oil was compared with the petroleum products and found that it can also be used as fuel in compression ignition engines. In the present work, the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine has been experimentally investigated using waste plastic oil as a fuel. Tests were performed at four injection timings (23°,20°,17° and 14° bTDC). When compared to the standard injection timing of 23° BTDC the retarded injection timing of 14° bTDC resulted in decreased oxides of nitrogen, carbon monoxide and unburned hydrocarbon while the brake thermal efficiency, carbon dioxide and smoke increased under all the test conditions.

280 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used hydrogen as an air-enrichment medium with diesel as an ignition source in a stationary diesel engine system to improve engine performance and reduce emissions.
Abstract: Diesel engines are the most trusted power sources in the transportation industry. They intake air and emit, among others, the pollutants NO X and particulate matter. Continuous efforts and tests have tried to reduce fuel consumption and exhaust emissions of internal combustion engines. Alternative fuels are key to meeting upcoming stringent emission norms. We study hydrogen as an air-enrichment medium with diesel as an ignition source in a stationary diesel engine system to improve engine performance and reduce emissions. Stationary engines can be operated with less fuel than neat diesel operations, resulting in lower smoke levels and particulate emissions. Hydrogen ( H 2 ) -enriched air systems in diesel engines enable the realization of higher brake thermal efficiency, resulting in lower specific energy consumption (SEC). NO X emissions are reduced from 2762 to 515 ppm with 90% hydrogen enrichment at 70% engine load. At full load, NO X emission marginally increases compared to diesel operation, while both smoke and particulate matter are reduced by about 50%. The brake thermal efficiency increases from 22.78% to 27.9% with 30% hydrogen enrichment. Thus, using hydrogen-enriched air in a diesel engine produces less pollution and better performance.

250 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of injection pressure on performance, emissions and combustion characteristics of the engine was investigated in a constant speed, DI diesel engine with varied fuel injection pressures (200, 220 and 240 bar).
Abstract: Due to the increasing demand for fossil fuels and environmental threat, a number of renewable sources of energy have been studied worldwide. In the present investigation a high linolenic linseed oil methyl ester has been investigated in a constant speed, DI diesel engine with varied fuel injection pressures (200, 220 and 240 bar). The main objective of this study is to investigate the effect of injection pressures on performance, emissions and combustion characteristics of the engine. The test results show that the optimum fuel injection pressure is 240 bar with linseed methyl ester. At this optimized pressure the thermal efficiency is similar to diesel and a reduction in carbon monoxide, unburned hydrocarbon and smoke emissions with an increase in the oxides of nitrogen was noticed compared to diesel. The combustion analysis shows that, the ignition delay is lower at higher injection pressures compared to diesel and the peak pressure is also higher at full load. The combustion duration was almost same at all the injection pressures. It is concluded that linseed methyl ester at 240 bar injection pressure is more efficient than 200 and 220 bar, except for nitrogen oxides emission.

235 citations

Journal ArticleDOI
TL;DR: In this article, the performance, emission and combustion characteristics of a single cylinder, four-stroke, air-cooled DI diesel engine run with waste plastic oil was investigated. And the experimental results have showed a stable performance with brake thermal efficiency similar to that of diesel.
Abstract: Increase in energy demand, stringent emission norms and depletion of oil resources have led the researchers to find alternative fuels for internal combustion engines. On the other hand waste plastic pose a very serious environment challenge because of their disposal problems all over the world. Plastics have now become indispensable materials in the modern world and application in the industrial field is continually increasing. In this context, waste plastic solid is currently receiving renewed interest. The properties of the oil derived from waste plastics were analyzed and compared with the petroleum products and found that it has properties similar to that of diesel. In the present work, waste plastic oil was used as an alternate fuel in a DI diesel engine without any modification. The present investigation was to study the performance, emission and combustion characteristics of a single cylinder, four-stroke, air-cooled DI diesel engine run with waste plastic oil. The experimental results have showed a stable performance with brake thermal efficiency similar to that of diesel. Carbon dioxide and unburned hydrocarbon were marginally higher than that of the diesel baseline. The toxic gas carbon monoxide emission of waste plastic oil was higher than diesel. Smoke reduced by about 40% to 50% in waste plastic oil at all loads.

234 citations

Journal ArticleDOI
TL;DR: It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.
Abstract: Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

221 citations


Cited by
More filters
Reference EntryDOI
15 Oct 2004

2,118 citations

Journal ArticleDOI
TL;DR: A review of modern biomass-based transportation fuels such as fuels from Fischer-Tropsch synthesis, bioethanol, fatty acid (m)ethylester, biomethanol, and biohydrogen are briefly reviewed in this paper.
Abstract: In this paper, the modern biomass-based transportation fuels such as fuels from Fischer–Tropsch synthesis, bioethanol, fatty acid (m)ethylester, biomethanol, and biohydrogen are briefly reviewed. Here, the term biofuel is referred to as liquid or gaseous fuels for the transport sector that are predominantly produced from biomass. There are several reasons for bio-fuels to be considered as relevant technologies by both developing and industrialized countries. They include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The term modern biomass is generally used to describe the traditional biomass use through the efficient and clean combustion technologies and sustained supply of biomass resources, environmentally sound and competitive fuels, heat and electricity using modern conversion technologies. Modern biomass can be used for the generation of electricity and heat. Bioethanol and biodiesel as well as diesel produced from biomass by Fischer–Tropsch synthesis are the most modern biomass-based transportation fuels. Bio-ethanol is a petrol additive/substitute. It is possible that wood, straw and even household wastes may be economically converted to bio-ethanol. Bio-ethanol is derived from alcoholic fermentation of sucrose or simple sugars, which are produced from biomass by hydrolysis process. Currently crops generating starch, sugar or oil are the basis for transport fuel production. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Biodiesel is a renewable replacement to petroleum-based diesel. Biomass energy conversion facilities are important for obtaining bio-oil. Pyrolysis is the most important process among the thermal conversion processes of biomass. Brief summaries of the basic concepts involved in the thermochemical conversions of biomass fuels are presented. The percentage share of biomass was 62.1% of the total renewable energy sources in 1995. The reduction of greenhouse gases pollution is the main advantage of utilizing biomass energy.

1,505 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the source of production and characterization of vegetable oils and their methyl ester as the substitute of the petroleum fuel and future possibilities of Biodiesel production.
Abstract: The world is confronted with the twin crises of fossil fuel depletion and environmental degradation. The indiscriminate extraction and consumption of fossil fuels have led to a reduction in petroleum reserves. Petroleum based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain region of the world. Therefore, those countries not having these resources are facing a foreign exchange crisis, mainly due to the import of crude petroleum oil. Hence it is necessary to look for alternative fuels, which can be produced from materials available within the country. Although vegetative oils can be fuel for diesel engines, but their high viscosities, low volatilities and poor cold flow properties have led to the investigation of its various derivatives. Among the different possible sources, fatty acid methyl esters, known as Biodiesel fuel derived from triglycerides (vegetable oil and animal fates) by transesterification with methanol, present the promising alternative substitute to diesel fuels and have received the most attention now a day. The main advantages of using Biodiesel are its renewability, better quality exhaust gas emission, its biodegradability and the organic carbon present in it is photosynthetic in origin. It does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the green house effect. This paper reviews the source of production and characterization of vegetable oils and their methyl ester as the substitute of the petroleum fuel and future possibilities of Biodiesel production.

1,250 citations

Journal ArticleDOI
TL;DR: The use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel has been renewed interest in the use of biodiesel.
Abstract: The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy demand in developing countries.

1,088 citations

Journal ArticleDOI
TL;DR: In this paper, five types of models applied to HCCI engine modelling are discussed in the present paper, and specific strategies for diesel-fuelled, gasoline-fined, and other alternative fuelled combustion are also discussed.
Abstract: HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.

1,068 citations