scispace - formally typeset
Search or ask a question
Author

G. Narahari Sastry

Bio: G. Narahari Sastry is an academic researcher from North East Institute of Science and Technology. The author has contributed to research in topics: Non-covalent interactions & Virtual screening. The author has an hindex of 42, co-authored 216 publications receiving 7313 citations. Previous affiliations of G. Narahari Sastry include Council of Scientific and Industrial Research & Indian Institute of Chemical Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The current lineup of popular density functional theories, in particular those based on Becke's exchange functionals, fail to predict a correct dissociation behavior in radical ions where charge and spin must be separated (model: H2•+) or where both must be localized on one fragment (Model: He2•+) as discussed by the authors.
Abstract: The current lineup of popular density functional theories, in particular those based on Becke's exchange functionals, fail to predict a correct dissociation behavior in radical ions where charge and spin must be separated (model: H2•+) or where both must be localized on one fragment (model: He2•+). The repercussions of this on the location of certain transition states on radical ion potential energy surfaces are pointed out.

305 citations

Journal ArticleDOI
TL;DR: The review provides a comprehensive appraisal on several of the available virtual screening methods to-date and touches upon the application of statistical, graph theory based methods machine learning tools in virtual screening and combinatorial library design.
Abstract: Virtual screening emerged as an important tool in our quest to access novel drug like compounds. There are a wide range of comparable and contrasting methodological protocols available in screening databases for the lead compounds. The number of methods and software packages which employ the target and ligand based virtual screening are increasing at a rapid pace. However, the general understanding on the applicability and limitations of these methodologies is not emerging as fast as the developments of various methods. Therefore, it is extremely important to compare and contrast various protocols with practical examples to gauge the strength and applicability of various methods. The review provides a comprehensive appraisal on several of the available virtual screening methods to-date. Recent developments of the docking and similarity based methods have been discussed besides the descriptor selection and pharmacophore based searching. The review touches upon the application of statistical, graph theory based methods machine learning tools in virtual screening and combinatorial library design. Finally, several case studies are undertaken where the virtual screening technology has been applied successfully. A critical analysis of these case studies provides a good platform to estimate the applicability of various virtual screening methods in the new lead identification and optimization.

288 citations

Journal ArticleDOI
TL;DR: Analysis of cation interaction with aromatic side chain motifs of four amino acids shows that the orientation of aromatic side chains in protein is effected in the presence of ammonium ions, however, the regioselectivity of metal ion complexation is controlled by the affinity of the site of attack.
Abstract: Ab initio (HF, MP2, and CCSD(T)) and DFT (B3LYP) calculations were done in modeling the cation (H(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), NH(4)(+), and NMe(4)(+)) interaction with aromatic side chain motifs of four amino acids (viz., phenylalanine, tyrosine, tryptophan and histidine). As the metal ion approaches the pi-framework of the model systems, they form strongly bound cation-pi complexes, where the metal ion is symmetrically disposed with respect to all ring atoms. In contrast, proton prefers to bind covalently to one of the ring carbons. The NH(4)(+) and NMe(4)(+) ions have shown N-H...pi interaction and C-H...pi interaction with the aromatic motifs. The interaction energies of N-H...pi and C-H...pi complexes are higher than hydrogen bonding interactions; thus, the orientation of aromatic side chains in protein is effected in the presence of ammonium ions. However, the regioselectivity of metal ion complexation is controlled by the affinity of the site of attack. In the imidazole unit of histidine the ring nitrogen has much higher metal ion (as well as proton) affinity as compared to the pi-face, facilitating the in-plane complexation of the metal ions. The interaction energies increase in the order of 1-M Ca(2+) > Li(+) > Na(+) > K(+) congruent with NH(4)(+) > NMe(4)(+). The variation of the bond lengths and the extent of charge transfer upon complexation correlate well with the computed interaction energies.

263 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The re-optimization of a recently proposed long-range corrected hybrid density functional, omegaB97X-D, to include empirical atom-atom dispersion corrections yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions.
Abstract: We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functional [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106] to include empirical atom–atom dispersion corrections. The resulting functional, ωB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, ωB97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics it performs noticeably better. Relative to our previous functionals, such as ωB97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

9,184 citations

Journal Article
TL;DR: Chai and Head-Gordon as discussed by the authors proposed a long-range corrected (LC) hybrid density functional with Damped Atom-Atom Dispersion corrections, which is called ωB97X-D.
Abstract: Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections Jeng-Da Chai ∗ and Martin Head-Gordon † Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Dated: June 14, 2008) We report re-optimization of a recently proposed long-range corrected (LC) hybrid density func- tionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, ωB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent sys- tems, ωB97X-D shows slight improvement over other empirical dispersion-corrected density func- tionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as ωB97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions. I. INTRODUCTION Due to its favorable cost-to-performance ratio, Kohn- Sham density-functional theory (KS-DFT) [1, 2] has be- come the most popular electronic structure theory for large-scale ground-state systems [3–5]. Its extension for treating excited-state systems [6, 7], time-dependent den- sity functional theory (TDDFT), has also been developed to the stage where it is now very widely used. The essential ingredient of KS-DFT, the exchange- correlation energy functional E xc , remains unknown and needs to be approximated. Semi-local gradient-corrected density functionals, though successful in many applica- tions, lead to qualitative failures in some circumstances, where the accurate treatment of non-locality of exchange- correlation hole becomes crucial. These situations occur mostly in the asymptotic regions of molecular systems, such as spurious self-interaction effects upon dissociation [8, 9] and dramatic failures for long-range charge-transfer excitations [10–12]. Widely used hybrid density function- als, like B3LYP [13, 14], do not qualitatively resolve these problems. These self-interaction errors can be qualitatively re- solved using the long-range corrected (LC) hybrid density functionals [15, 16, 18], which employ 100% Hartree-Fock (HF) exchange for long-range electron-electron interac- tions. This is accomplished by a partition of unity, using erf(ωr)/r for long-range (treated by HF exchange) and erfc(ωr)/r for short-range (treated by an exchange func- tional), with the parameter ω controlling the partition- ing. Over the past five years, the LC hybrid scheme has been attracting increasing attention [15] since its compu- tational cost is comparable with standard hybrid func- tionals [13]. However, LC functionals have tended to be inferior to the best hybrids for properties such as ther- mochemistry. ∗ Electronic † Author address: jdchai@berkeley.edu to whom correspondence should be addressed. Electronic address: mhg@cchem.berkeley.edu Recently we have improved the overall accuracy at- tainable with the LC functionals by using a systematic optimization procedure [18]. One important conclusion is that optimizing LC and hybrid functionals with identical numbers of parameters in their GGA exchange and cor- relation terms leads to noticeably better results for all properties using the LC form. The resulting LC func- tional is called ωB97. Further statistically significant improvement results from re-optimizing the entire func- tional with one extra parameter corresponding to an ad- justable fraction of short-range exact exchange, defining the ωB97X functional. Independent test sets covering thermochemistry and non-covalent interactions support these conclusions. However, problems associated with the lack of non-locality of the correlation hole, such as the lack of dispersion interactions (London forces), still remain, as the semi-local correlation functionals cannot capture long-range correlation effects [19, 20]. There have been significant efforts to develop a frame- work that can account for long-range dispersion effects within DFT. Zaremba and Kohn (ZK) [21] derived an exact expression for the second-order dispersion energy in terms of the exact density-density response functions of the two separate systems. To obtain a tractable non- local dispersion functional, Dobson and Dinite (DD) [22] made local density approximations to the ZK response functions. DD’s non-local correlation functional was ob- tained independently [23] by modifying the effective den- sity defined in the earlier work of Rapcewicz and Ashcroft Starting from the formally exact expression of KS- DFT, the adiabatic connection fluctuation-dissipation theorem (ACFDT), for the ground-state exchange- correlation energy, Langreth and co-workers [25] devel- oped a so-called van der Waals density functional (vdW- DF) by making a series of reasonable approximations to yield a computationally tractable scheme. Recently, Becke and Johnson (BJ) developed a series of post-HF correlation models with a novel treatment for dispersion interactions based on the exchange-hole dipole moment [26]. The origin of dispersion claimed in the BJ models was recently questioned by Alonso, and A.

6,345 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: A new tool, g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described, and the calculated interaction energy of 37 structurally diverse HIV-1 protease inhibitor complexes is compared.
Abstract: Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA), a method to estimate interaction free energies, has been increasingly used in the study of biomolecular interactions. Recently, this method has also been applied as a scoring function in computational drug design. Here a new tool g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described. g_mmpbsa was developed as part of the Open Source Drug Discovery (OSDD) consortium. Its aim is to integrate high-throughput molecular dynamics (MD) simulations with binding energy calculations. The tool provides options to select alternative atomic radii and different nonpolar solvation models including models based on the solvent accessible surface area (SASA), solvent accessible volume (SAV), and a model which contains both repulsive (SASA-SAV) and attractive components (described using a Weeks–Chandler–Andersen like integral method). We showcase the effectiveness of the tool ...

2,862 citations

Journal ArticleDOI
TL;DR: The qualitative failures of the commonly used hybrid density functionals in some "difficult problems," such as dissociation of symmetric radical cations and long-range charge-transfer excitations, are significantly reduced by the present LC hybriddensity functionals.
Abstract: A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry, kinetics, and noncovalent interactions, when compared with common hybrid density functionals. The qualitative failures of the commonly used hybrid density functionals in some “difficult problems,” such as dissociation of symmetric radical cations and long-range charge-transfer excitations, are significantly reduced by the present LC hybrid density functionals.

2,852 citations