scispace - formally typeset
Search or ask a question
Author

G.R. Wiggans

Bio: G.R. Wiggans is an academic researcher from Agricultural Research Service. The author has contributed to research in topics: Sire & Population. The author has an hindex of 47, co-authored 226 publications receiving 9426 citations. Previous affiliations of G.R. Wiggans include University of Minnesota & Cornell University.
Topics: Sire, Population, Dairy cattle, Brown Swiss, Breed


Papers
More filters
Journal ArticleDOI
TL;DR: Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations and genomic prediction improves reliability by tracing the inheritance of genes even with small effects.

1,166 citations

Journal ArticleDOI
TL;DR: New terms and definitions were developed to explain national USDA genetic evaluations computed by an animal model, whereiability is the squared correlation of predicted and true transmitting ability.

403 citations

Journal ArticleDOI
TL;DR: The analysis of the US national dairy database found that generation intervals have decreased dramatically over the past 6 y, and selection intensity for lowly heritable traits has increased considerably, resulting in rapid genetic improvement in fertility, lifespan, and health in a breed where these traits eroded over time.
Abstract: Seven years after the introduction of genomic selection in the United States, it is now possible to evaluate the impact of this technology on the population. Selection differential(s) (SD) and generation interval(s) (GI) were characterized in a four-path selection model that included sire(s) of bulls (SB), sire(s) of cows (SC), dam(s) of bulls (DB), and dam(s) of cows (DC). Changes in SD over time were estimated for milk, fat, and protein yield; somatic cell score (SCS); productive life (PL); and daughter pregnancy rate (DPR) for the Holstein breed. In the period following implementation of genomic selection, dramatic reductions were seen in GI, especially the SB and SC paths. The SB GI reduced from ∼7 y to less than 2.5 y, and the DB GI fell from about 4 y to nearly 2.5 y. SD were relatively stable for yield traits, although modest gains were noted in recent years. The most dramatic response to genomic selection was observed for the lowly heritable traits DPR, PL, and SCS. Genetic trends changed from close to zero to large and favorable, resulting in rapid genetic improvement in fertility, lifespan, and health in a breed where these traits eroded over time. These results clearly demonstrate the positive impact of genomic selection in US dairy cattle, even though this technology has only been in use for a short time. Based on the four-path selection model, rates of genetic gain per year increased from ∼50–100% for yield traits and from threefold to fourfold for lowly heritable traits.

380 citations

Journal ArticleDOI
TL;DR: A genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows provides useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.
Abstract: Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows.

331 citations

Journal ArticleDOI
TL;DR: Cow fertility was negatively correlated with yield but is a major component of longevity, so recent selection for longevity may have slowed the long-term decline in fertility.

283 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously, and a blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects.

4,196 citations

15 Feb 2016
TL;DR: The following table summarizes the nutrient requirements of dairy cattle by type of milk type and type of feed they receive.
Abstract: Nutrient requirements of dairy cattle , Nutrient requirements of dairy cattle , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

1,765 citations

Journal ArticleDOI
TL;DR: The objectives of BIOS 781 are to present basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination, and methods for genome-wide association and stratification control.
Abstract: LEARNING The objectives of BIOS 781 are to present: OBJECTIVES: 1. basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination 2. an exposure to QTL mapping methods of complex quantitative traits and linkage methods to detect co-segregation with disease 3. methods for assessing marker-disease linkage disequilibrium, including case-control approaches 4. methods for genome-wide association and stratification control.

1,516 citations

Journal ArticleDOI
TL;DR: In this article, a new technology called genomic selection is revolutionizing dairy cattle breeding, which refers to selection decisions based on genomic breeding values (GEBV) and is calculated as the sum of the effects of dense genetic markers, or haplotypes of these markers, across the entire genome, thereby capturing all the quantitative trait loci (QTL) that contribute to variation in a trait.

1,461 citations