scispace - formally typeset
Search or ask a question
Author

G. Rai

Bio: G. Rai is an academic researcher. The author has contributed to research in topics: Deformation (engineering) & Strain rate. The author has an hindex of 1, co-authored 1 publications receiving 138 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the shape of the log stress-log strain rate curve for the Al-33 wt pct Cu eutectic alloy was examined and the inherent grain growth of the very fine grains which occurs during deformation, and the strain dependence of m at low strains, were shown to be the causes of the familiar shape of log stresslog strain curve for Al-Cu alloy.
Abstract: The usual method of measuring the strain rate sensitive ‘m’ values of superplastic materials through differential cross-head speed is found to result in improperly definedm values;m is found to depend strongly on the strain to which the material is subjected, especially at low strains. In this connection, the shape of the log stress-log strain rate curve is examined for the Al-33 wt pct Cu eutectic alloy. The inherent grain growth of the very fine grains which occurs during deformation, and the strain dependence ofm at low strains, are shown to be the causes of the familiarS shape of the log stress-log strain rate curves for the Al-Cu alloy. At high strains (15 to 20 pct and higher) where the stress is no longer importantly strain sensitive, the log stress-log strain rate curve is a straight line of slope near 0.5. The elongation at fracture also does not go through a maximum but continues to increase slowly to the lowest strain rate examined: 10-7 per s.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relationship between stress and strain rate is often sigmoidal in superplastic materials, with a low strain rate sensitivity at low and high strain rates (regions I and III, respectively) and a high strain rate sensitive at intermediate strain rate (region II) where the material exhibits optimal super-plasticity as discussed by the authors.
Abstract: The relationship between stress and strain rate is often sigmoidal in superplastic materials, with a low strain rate sensitivity at low and high strain rates (regions I and III, respectively) and a high strain rate sensitivity at intermediate strain rates (region II) where the material exhibits optimal superplasticity This relationship is examined in detail, with reference both to the conflicting results reported for the Zn-22 pct Al eutectoid alloy and to the significance of the three regions of flow

378 citations

Journal ArticleDOI
TL;DR: A review of the current understanding of the flow of superplastic metals and ceramics can be found in this paper, where a minor modification to the present definition of super-plasticity is proposed.
Abstract: On this seventy-fifth anniversary of the first scientific report of true superplastic flow, it is appropriate both to look back and examine the major developments that established the present understanding of superplasticity and to look to the future to the new opportunities that are made possible by new processing techniques, based on the application of severe plastic deformation, that permit the production of fully dense bulk materials with submicrometer or nanometer grain sizes. This review proposes a minor modification to the present definition of superplasticity, it provides an overview of the current understanding of the flow of superplastic metals and ceramics and then it examines, and gives examples of, the new possibilities that are now available for achieving exceptional superplastic behavior.

340 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived expressions for the rate of diffusional flow when the density of sinks and sources becomes small and when their mobility is limited by impurities, solutes, or precipitates.

294 citations

Journal ArticleDOI
TL;DR: In this paper, a sigmoidal relationship between stress and strain rate is noted and the mechanical behavior has been divided into three regions: low-stress region (region I), intermediatestress region (the superplastic region or region II), and high-stress region(region III).
Abstract: In several recent experiments on the Zn-22% Al eutectoid and the Pb-62% Sn eutectic, a sigmoidal relationship between stress and strain rate is noted and the mechanical behaviour has been divided into three regions: low-stress region (region I), intermediatestress region (the superplastic region or region II), and high-stress region (region III). In region II, the stress exponent,n, is ≃ 2 and the apparent activation energy,Q, is close to grain-boundary diffusion,Qgb, but in both regions I and III the stress exponent and the activation energy increase (n > 2 andQ >Qgb). Analysis of the experimental data of the two superplastic alloys suggests that the transition in behaviour between region II and region I may not necessarily reflect a change in deformation process but can arise from the presence of a threshold stress which decreases strongly with increasing temperature. Based on consideration of various possible threshold stress processes during superplastic flow, it seems most likely that a threshold stress which depends strongly on temperature may result from impurity atom segregation at boundaries and their interaction with boundary dislocations.

195 citations