scispace - formally typeset
Search or ask a question
Author

G. S. Butler-Browne

Bio: G. S. Butler-Browne is an academic researcher from Paris Descartes University. The author has contributed to research in topics: Myocyte & Skeletal muscle. The author has an hindex of 1, co-authored 1 publications receiving 137 citations.
Topics: Myocyte, Skeletal muscle, Myogenesis, Myosin

Papers
More filters
Journal ArticleDOI
TL;DR: The present work reveals a remarkable pattern of MHC gene expression in the pig and raises many questions on the real nature of these isoforms.
Abstract: The aim of this study was to analyze the temporal sequence of expression of the myosin isoforms in the populations of muscle fibers in the pig and to bring more information on the origin of the strikingly different pattern of fiber composition and distribution between the deep medial red (oxido-glycolytic) and superficial white (glycolytic) portions of semitendinosus (ST) muscle. Muscle samples were taken from 49-, 55-, 75-, 90-, 103-, and 113- (birth) day-old fetuses, from 6-, 11-, 21-, 35-, 50-, and 80-day-old piglets, and from a 3-year-old pig. Our results confirm the sequential formation of primary and secondary generation fibers. The use of immunohistochemistry and heterologous monoclonal antibodies (mAb) directed against specific myosin heavy chain (MHC) isoforms revealed a different pattern of gene expression between the two portions of the ST muscle for both generations of fibers. By 75 days of gestation (dg), primary myotubes from the deep medial portion stained positively for the anti-slow MHC mAb and negatively for the adult anti-fast MHC, whereas the opposite was observed in the superficial portion. Secondary fibers never expressed slow MHC until late gestation. Instead, they expressed an adult fast MHC isoform as soon as they formed in the deep medial portion and later on in the superficial portion. From late gestation to the first 3 postnatal weeks, slow MHC began to be expressed in a subpopulation of secondary fibers. These fibers were in the direct vicinity of primary myotubes in the deep medial portion, whereas their location could not be established in the superficial portion. The remaining secondary fibers matured to type IIA in the direct vicinity of these type I fibers and to type IIB at the periphery of the islets. In both portions of the muscle, a subpopulation of secondary fibers, the first ones to express slow MHC, also transitorily expressed a MHC that was identical or closely related to the alpha-cardiac MHC during the early postnatal period. A third generation of small diameter fibers was observed shortly after birth and reacted with the anti-fetal MHC mAb; their destiny remains to be established.(ABSTRACT TRUNCATED AT 400 WORDS)

141 citations


Cited by
More filters
Book ChapterDOI
TL;DR: A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions, and it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner.
Abstract: Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.

651 citations

Journal ArticleDOI
TL;DR: This comparative survey shows that the cellular processes of differentiation are comparable between species, while their timing is usually species specific.
Abstract: In farm animals (bovine, ovine, swine, rabbit and poultry), muscle fibre characteristics play a key role in meat quality. The present review summarises the knowledge on muscle fibre characteristics and ontogenesis in these species. Myofibre ontogenesis begins very early during embryonic life, with the appearance of two or three successive waves of myoblasts which constitute the origin of the different types of muscle fibres. In small animals (rodents and poultry), a primary and a secondary generation of fibres arise respectively during the embryonic and foetal stages of development. In the largest species (bovines, sheep, pigs) a third generation arises in the late foetal or early postnatal period. Following these two or three waves of myogenesis, the total number of fibres is fixed. This occurs during foetal life (bovines, ovines, pigs and poultry) or during the first postnatal month in rabbits. Contractile and metabolic differentiation proceed by steps in parallel to myogenesis and are partially linked to each other. In bovines and ovines, the main events occur during foetal life, whereas they occur soon after birth in the pig, poultry and rabbit, but some plasticity remains later in life in all species. This comparative survey shows that the cellular processes of differentiation are comparable between species, while their timing is usually species specific.

334 citations

Journal ArticleDOI
TL;DR: This review describes the involvements of Ca2+-dependent mechanisms, and the energy state of the myofibres in the control of contractile and metabolic properties, and proposes some genetic and environmental factors as possible tools to control meat quality trough the modulation of fibre type characteristics.

323 citations

Journal ArticleDOI
TL;DR: Overall, maternal feeding regimen affected muscle Fiber type distribution, whereas birth weight and gender affected muscle fiber area.
Abstract: Maternal nutrition and progeny birth weight affect muscle fiber development in the pig, thereby influencing early postnatal growth rate. The objective of the study was to determine the extent to which growth, morphometric characteristics, and area and distribution of slow-oxidative (SO), fast oxidative-glycolytic (FOG), and fast glycolytic (FG) fibers of three muscles (LM = longissimus muscle; RF = rectus femoris; ST = semitendinosus) of slaughter pigs were affected by DE intake level during the first 50 d of gestation. Multiparous Swiss Large White sows were assigned randomly to one of three energy intake treatments: 1) fed 2.8 kg/d of a standard diet (STD; n = 6) containing 10.7 MJ DE/kg; 2) fed 2.8 kg/d of a low-energy diet (LE; n = 5) containing 6.6 MJ DE/kg; or 3) fed 4.0 kg/d of a standard diet (HE; n = 5) containing 10.7 MJ DE/kg (as-fed basis). Sows were subjected to energy intake treatments for the first 50 d of gestation; however, from d 51 to parturition, sows received 2.8 kg/d of the standard diet, and the amount of feed offered each sow during lactation was adjusted according to the litter size. Sows farrowed normally and pig birth weights were recorded. Based on birth weight, the two lightest (1.27 kg; Lt) and two heaviest (1.76 kg; Hvy) barrows and gilts from the 16 litters (n = 64) were selected at weaning and were offered a fixed amount of feed (170 g x BW(0.569)/d) from 25 to 105 kg BW. Regardless of the birth weight, progeny from HE sows grew slower (P < 0.05) during lactation and the growing-finishing period, had a lower (P < 0.05) gain-to-feed ratios, and had higher (P < 0.05) percentages of adipose tissue than pigs born from LE sows. The ST was shorter (P = 0.03) in Lt than in Hvy pigs, and the ST of gilts was heavier (P = 0.01) and had a larger (P = 0.01) girth than the ST of barrows. Overall mean fiber area tended to be larger (P < or = 0.11) in the LM and light portion of the ST of Lt than in Hvy pigs, and was larger (P = 0.03) in the ST of gilts than barrows. The ST of progeny from LE sows had fewer (P < 0.10) FG fibers, which was compensated by either more (P < 0.05) FOG in the light portion of the ST, or more (P < 0.10) SO fibers in the dark portion, and these differences were more pronounced in Lt pigs than in Hvy pigs. Overall, maternal feeding regimen affected muscle fiber type distribution, whereas birth weight and gender affected muscle fiber area.

203 citations

Journal ArticleDOI
TL;DR: In vivo studies and results based on cell lines or primary cell cultures show that IGF-I and IGF-II stimulate both proliferation and differentiation of myoblasts and satellite cells in a time and concentration-dependent way, via interaction with type I IGF receptors.

193 citations