scispace - formally typeset
Search or ask a question
Author

G. Sardin

Bio: G. Sardin is an academic researcher from University of Barcelona. The author has contributed to research in topics: Amorphous silicon & Thin film. The author has an hindex of 15, co-authored 41 publications receiving 811 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Amorphous calcium phosphate and crystalline hydroxyapatite coatings with different morphologies were deposited onto Ti-6Al-4V substrates by means of the laser ablation technique and the strength of adhesion was evaluated through the scratch test technique and scanning electron microscopy.
Abstract: Amorphous calcium phosphate and crystalline hydroxyapatite coatings with different morphologies were deposited onto Ti–6Al–4V substrates by means of the laser ablation technique. The strength of adhesion of the coatings to the substrate and their mode of fracture were evaluated through the scratch test technique and scanning electron microscopy. The effect of wet immersion on the adhesion was also assessed. The mechanisms of failure and the critical load of delamination differ significantly depending on the phase and structure of the coatings. The HA coatings with granular morphology have higher resistance to delamination as compared to HA coatings with columnar morphology. This fact has been related to the absence of stresses for the granular morphology.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the pressure of a sole water atmosphere during the pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V substrates has been studied.
Abstract: The influence of the pressure of a sole water atmosphere during the pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V substrates has been studied. The rest of the technological parameters involved in the process have been fixed near the conditions where the best crystalline coatings are obtained. The pressure of the water atmosphere has been varied between 0.15 and 1.5 mbar. The films properties have been analysed by means of XRD, SEM, FT-IR spectroscopy and SIMS. An optimal region, in order to obtain thin films of highly crystalline hydroxyapatite, has been found near 0.5 mbar for the two excimer laser wavelengths (193 nm and 248 nm) used in this study. These films have a preferential orientation in the (100) direction.

90 citations

Journal ArticleDOI
TL;DR: Pulsed laser deposited calcium phosphate coatings on titanium alloy have been tested under simulated physiological conditions in order to evaluate the changes in morphology, composition and structure.
Abstract: Pulsed laser deposited calcium phosphate coating on titanium alloy have been tested under simulated physiological conditions in order to evaluate the changes in morphology, composition and structure. The coatings were deposited under different conditions to obtain different crystalline structures, ranging from amorphous and mixed crystalline phases to pure crystalline hydroxyapatite (HA). The coated samples were immersed in a Ca-free Hank’s balanced salt solution for up to 5 days. Characterization of the coatings was performed by X-ray diffraction, scanning electron microscopy and Fourier-transform Raman spectroscopy before and after immersion. Their dissolution behaviour was also monitored through their mass loss and calcium release. Coatings of pure HA preserve their morphology and structure during the exposure time in solution. In multiphasic coatings, consisting of HA with tetracalcium phosphate (TetraCP) or β-tricalcium phosphate (β-TCP) with a-tricalcium phosphate (α-TCP), microporosity is induced by the complete dissolution of TetraCP or α-TCP. Amorphous calcium phosphate coatings totally dissolve.

81 citations

Journal ArticleDOI
TL;DR: The growth of hydroxyapatite coatings obtained by KrF excimer laser ablation and their adhesion to a titanium alloy substrate were studied by producing coatings with thicknesses ranging from 170 nm up to 1.5 microm, as a result of different deposition times.
Abstract: The growth of hydroxyapatite coatings obtained by KrF excimer laser ablation and their adhesion to a titanium alloy substrate were studied by producing coatings with thicknesses ranging from 170 nm up to 1.5 μm, as a result of different deposition times. The morphology of the coatings consists of grain-like particles and also droplets. During growth the grain-like particles grow in size, partially masking the droplets, and a columnar structure is developed. The thinnest film is mainly composed of amorphous calcium phosphate. The coating 350 nm thick already contains hydroxyapatite, whereas thicker coatings present some alpha tricalcium phosphate in addition to hydroxyapatite. The resulting coating to substrate adhesion was evaluated through the scratch test technique. Coatings fail under the scratch test by spallating laterally from the diamond tip and the failure load increases as thickness decreases, until not adhesive but cohesive failure for the thinnest coating is observed.

80 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the scratch-test technique to evaluate the mechanical performance of HHA coatings on Ti-6Al-4V substrates by laser ablation with a KrF excimer laser.
Abstract: Hydroxyapatite (HA) coatings were deposited on Ti-6Al-4V substrates by laser ablation with a KrF excimer laser. Depositions were performed at 45 Pa of water vapour and at a substrate temperature of 575 °C. After 7 min of deposition, coatings were left at this temperature for different times before cooling down. The samples morphology and structure were characterised by scanning electron microscopy, X-ray diffractometry and Raman spectroscopy. The mechanical performance of the coatings was evaluated through the scratch-test technique. The coatings do not present important differences between them. However, there is an interface layer between the coating and the substrate that indeed presents an evolution with the heating time. This interface layer is constituted by two different species: titanium oxide and Ti-6Al-4V with oxygen diffused in its lattice. Its thickness increases during the first minutes of heating after deposition. An evolution of the titanium oxide phases with the time of heating has been detected by Raman spectroscopy. The samples fail at lower loads in the scratch-test as longer is the time that they remained at high temperature. The mode of failure of the samples suggests that failure occurs at the interface.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs.
Abstract: Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.

664 citations

Journal ArticleDOI
TL;DR: This review will discuss the characterization of sputtered CaP coatings before and after post-deposition treatments and tissue responses to some of the characterized coating surfaces.
Abstract: New promising techniques for depositing hydroxyapatite (HA) and calcium phosphate (CaP) coatings on medical devices are continuously being investigated. Given the vast number of experimental deposition process currently available, this review will focus only on CaP and/or HA coatings produced using the sputtering process. This review will discuss the characterization of sputtered CaP coatings before and after post-deposition treatments and tissue responses to some of the characterized coating surfaces. From the studies observed in the literature, current research on sputtered CaP coatings has shown some promises that may eliminate some of the problems associated with the plasma-spraying process. It has been generally accepted that sputtered HA and CaP coatings improve bone strength and initial osseointegration rate. However, optimal coating properties required to achieve maximal bone response are yet to be reported. As such, the use of well-characterized sputtered CaP and/or HA surfaces in the evaluation of biological responses should be well documented to avoid controversial results. In addition, future investigations of the sputtering process should include clinical trials, to continue the understanding of bone responses to coated-implant surfaces of different properties, and the possibility of coupling sputtered HA and CaP coatings with growth factors.

631 citations

Journal ArticleDOI
TL;DR: This review paper on amorphous calcium phosphates provides an update on several aspects of these compounds which have led to many studies and some controversy since the 1970s, particularly because of the lack of irrefutable proof of the occurrence of an ACP phase in mineralised tissues of vertebrates.
Abstract: This review paper on amorphous calcium phosphates (ACPs) provides an update on several aspects of these compounds which have led to many studies and some controversy since the 1970s, particularly because of the lack of irrefutable proof of the occurrence of an ACP phase in mineralised tissues of vertebrates. The various synthesis routes of ACPs with different compositions are reported and the techniques used to characterise this phase are reviewed. We focus on the various physico-chemical properties of ACPs, especially the reactivity in aqueous media, which have been exploited to prepare bioactive bone substitutes, particularly in the form of coatings and cements for orthopaedic applications and composites for dental applications.

600 citations

Journal ArticleDOI
TL;DR: In the present article, attempts are made to give an overview of the basic principles behind the coating techniques as well as advantageous features such as bioactivity and biocompatibility associated with these coatings.
Abstract: With an ageing population, war, and sports related injuries there is an ever-expanding requirement for hard tissue replacement such as bone. Engineered artificial scaffold biomaterials with appropriate mechanical properties, surface chemistry and surface topography are in a great demand for enhancing cell attachment, cell growth and tissue formation at such defect sites. Most of these engineering techniques are aimed at mimicking the natural organization of the bone tissues and thereby create a conducive environment for bone regeneration. As the interaction between the cells and tissues with biomaterials at the tissue–implant interface is a surface phenomenon, surface properties play a major role in determining both the biological response to implants and the material response to the physiological condition. Hence surface engineering of biomaterials is aimed at modifying the material and biological responses through changes in surface properties while still maintaining the bulk mechanical properties of the implant. Therefore, there has been a great thrust towards development of Ca–P-based surface coatings on various metallic and nonmetallic substrates for load bearing implant applications such as hip joint prosthesis, knee joint prosthesis and dental implants. Typical coating methodologies like ion beam assisted deposition, plasma spray deposition, pulsed laser physical vapor deposition, magnetron sputtering, sol–gel derived coatings, electrodeposition, micro-arc oxidation and laser deposition are extensively studied at laboratory scale. In the present article, attempts are made to give an overview of the basic principles behind the coating techniques as well as advantageous features such as bioactivity and biocompatibility associated with these coatings. A strong emphasis will be given on laser-induced textured and bioactive coatings obtained by the author's research group [A. Kurella, N.B. Dahotre, Journal of Biomedical Applications 20 (2005) 5–50; A. Kurella, N.B. Dahotre, Acta Biomaterialia 2 (2006) 677–688; A. Kurella, N.B. Dahotre, Journal of Minerals, Metals and Materials Society (JOM) 58 (2006) 64–66; A. Kurella, N.B. Dahotre, Journal of Materials Science: Materials in Medicine 17 (2006) 565–572; P.G. Engleman, A. Kurella, A. Samant, C.A. Blue, N.B. Dahotre, Journal of Minerals, Metals and Materials Society (JOM) 57 (2005) 46–50; R. Singh, A. Kurella, N.B. Dahotre, Journal of Biomaterials Applications 21 (2006) 46–72; S.R. Paital, N.B. Dahotre, Biomedical Materials 2 (2007) 274–281; S.R. Paital, N.B. Dahotre, 2009, Acta Biomaterialia, doi:10.1016/j.actbio.2009.03.004 ; R. Singh, N.B. Dahotre, Journal of Materials Science: Materials in Medicine 18 (2007) 725–751.]. Since cells are sensitive to topographical features ranging from mesoscale to nanoscale, formation of these features by both pulsed and continuous wave Nd:YAG laser system will be highlighted. This can also be regarded as advancement towards third generation biomaterials which are bioinert, bioactive and which once implanted will stimulate cell adhesion, proliferation and growth at the interface. Further, an overview of various bio-implants and bio-devices and materials used for these kinds of devices, performance factors such as mechanical and corrosion behavior and surface science associated with these materials are also explained. As the present article is aimed at describing the multidisciplinary nature of this exciting field it also provides a common platform to understand this subject in a simple way for students, researchers, teachers and engineers in the fields ranging from medicine, dentistry, biology, materials science, biomedicine, biomechanics to physics.

597 citations

Journal ArticleDOI
TL;DR: A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented and the future research and use of these devices is discussed.
Abstract: A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.

594 citations