scispace - formally typeset
Search or ask a question
Author

G. Seufert

Bio: G. Seufert is an academic researcher from European Union. The author has contributed to research in topics: Eddy covariance & Ecosystem respiration. The author has an hindex of 28, co-authored 43 publications receiving 7955 citations.

Papers
More filters
Journal ArticleDOI
22 Sep 2005-Nature
TL;DR: An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.
Abstract: Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003.We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg Cyr21) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.

3,408 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyse the effect of extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets.
Abstract: This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets. For this analysis, we used 16 one-year-long data sets of carbon dioxide exchange measurements from European and US-American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long-term (annual) data sets, does not reflect the short-term temperature sensitivity that is effective when extrapolating from night- to daytime. Specifically, in summer active ecosystems the long

2,881 citations

Journal ArticleDOI
TL;DR: In this paper, a site evaluation approach combining Lagrangian Stochastic footprint modeling with a quality assessment approach for eddy-covariance data was applied to 25 forested sites of the CarboEurope-IP network.
Abstract: We applied a site evaluation approach combining Lagrangian Stochastic footprint modeling with a quality assessment approach for eddy-covariance data to 25 forested sites of the CarboEurope-IP network. The analysis addresses the spatial representativeness of the flux measurements, instrumental effects on data quality, spatial patterns in the data quality, and the performance of the coordinate rotation method. Our findings demonstrate that application of a footprint filter could strengthen the CarboEurope-IP flux database, since only one third of the sites is situated in truly homogeneous terrain. Almost half of the sites experience a significant reduction in eddy-covariance data quality under certain conditions, though these effects are mostly constricted to a small portion of the dataset. Reductions in data quality of the sensible heat flux are mostly induced by characteristics of the surrounding terrain, while the latent heat flux is subject to instrumentation-related problems. The Planar-Fit coordinate rotation proved to be a reliable tool for the majority of the sites using only a single set of rotation angles. Overall, we found a high average data quality for the CarboEurope-IP network, with good representativeness of the measurement data for the specified target land cover types.

225 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE, where the locations represent different forest types (coniferous/deciduous) and different nitrogen loads.
Abstract: . Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous) and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1) was a spruce forest in South-Germany (Hoglwald) receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1) was found in an oak forest in the Matra mountains (Hungary) receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time) and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are often explaining most of the temporal variation within a site. When comparing annual emissions on a regional scale, however, factors such as nitrogen deposition and forest and soil type become much more important.

220 citations

Journal ArticleDOI
TL;DR: In this paper, an updated fast BVOC emission modelling platform explicitly considering the seasonality of emission potentials and leaf temperature gradients in forest canopies by the semi-empirical emission module (seBVOC) was proposed and used for estimating hourly values of chemical compound-specific emissions in Europe (33-68 � north; 10� west to 40� east) in the years 1997, 2000, 2001, and 2003.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations

Journal ArticleDOI
13 Jun 2008-Science
TL;DR: Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Abstract: The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

4,541 citations

Journal ArticleDOI
22 Sep 2005-Nature
TL;DR: An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.
Abstract: Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003.We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg Cyr21) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.

3,408 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations

Journal ArticleDOI
TL;DR: A hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality was developed, and incorporating this hydraulic framework may be effective for modeling plant survival andortality under future climate conditions.
Abstract: Summary Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, pre- diction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric

3,302 citations