scispace - formally typeset
Search or ask a question
Author

G. Snijders

Bio: G. Snijders is an academic researcher from Utrecht University. The author has contributed to research in topics: Microglia & Bipolar disorder. The author has an hindex of 6, co-authored 15 publications receiving 312 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper performed a two-stage genome-wide association study with 111,326 clinically diagnosed/proxy AD cases and 677,663 controls and found 75 risk loci, of which 42 were new at the time of analysis.
Abstract: Abstract Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.

403 citations

Journal ArticleDOI
TL;DR: The phenotypic signature of hu MG was identified, which was distinct from peripheral myeloid cells but was comparable to fresh huMG, and microglia regional heterogeneity was identified.
Abstract: Microglia, the specialized innate immune cells of the CNS, play crucial roles in neural development and function. Different phenotypes and functions have been ascribed to rodent microglia, but little is known about human microglia (huMG) heterogeneity. Difficulties in procuring huMG and their susceptibility to cryopreservation damage have limited large-scale studies. Here we applied multiplexed mass cytometry for a comprehensive characterization of postmortem huMG (103 - 104 cells). We determined expression levels of 57 markers on huMG isolated from up to five different brain regions of nine donors. We identified the phenotypic signature of huMG, which was distinct from peripheral myeloid cells but was comparable to fresh huMG. We detected microglia regional heterogeneity using a hybrid workflow combining Cytobank and R/Bioconductor for multidimensional data analysis. Together, these methodologies allowed us to perform high-dimensional, large-scale immunophenotyping of huMG at the single-cell level, which facilitates their unambiguous profiling in health and disease.

262 citations

Journal ArticleDOI
TL;DR: This meta-analysis shows a region-specific decrease in the density of postsynaptic elements in SCZ, which provides an important cellular hallmark for future preclinical and neuropathological research in order to increase the understanding of brain dysconnectivity inSCZ.
Abstract: Changed synapse density has been suggested to be involved in the altered brain connectivity underlying schizophrenia (SCZ) pathology. However, postmortem studies addressing this topic are heterogeneous and it is not known whether changes are restricted to specific brain regions. Using meta-analysis, we systematically and quantitatively reviewed literature on the density of postsynaptic elements in postmortem brain tissue of patients with SCZ compared to healthy controls. We included 3 outcome measurements for postsynaptic elements: dendritic spine density (DSD), postsynaptic density (PSD) number, and PSD protein expression levels. Random-effects meta-analysis (31 studies) revealed an overall decrease in density of postsynaptic elements in SCZ (Hedges's g: -0.33; 95% CI: -0.60 to -0.05; P = .020). Subgroup analyses showed reduction of postsynaptic elements in cortical but not subcortical tissues (Hedges's g: -0.44; 95% CI: -0.76 to -0.12; P = .008, Hedges's g: -0.11; 95% CI: -0.54 to 0.35; P = .671) and specifically a decrease for the outcome measure DSD (Hedges's g: -0.81; 95% CI: -1.37 to -0.26; P = .004). Further exploratory analyses showed a significant decrease of postsynaptic elements in the prefrontal cortex and cortical layer 3. In all analyses, substantial heterogeneity was present. Meta-regression analyses showed no influence of age, sex, postmortem interval, or brain bank on the effect size. This meta-analysis shows a region-specific decrease in the density of postsynaptic elements in SCZ. This phenotype provides an important cellular hallmark for future preclinical and neuropathological research in order to increase our understanding of brain dysconnectivity in SCZ.

92 citations

Journal ArticleDOI
TL;DR: In this paper , the authors describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals and performed systematic analyses to investigate various aspects of microglia heterogeneities, including brain region and aging.
Abstract: Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer’s disease and P2RY12 for Parkinson’s disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders. Transcriptomic analyses of 255 primary human microglial samples from 100 individuals highlight brain region, age, sex and disease states as sources of microglial heterogeneity. Molecular quantitative trait locus analyses implicate variants involved in neurological diseases through effects on gene expression and splicing.

66 citations

Journal ArticleDOI
TL;DR: In this article , the authors describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals and performed systematic analyses to investigate various aspects of microglia heterogeneities, including brain region and aging.
Abstract: Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer’s disease and P2RY12 for Parkinson’s disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders. Transcriptomic analyses of 255 primary human microglial samples from 100 individuals highlight brain region, age, sex and disease states as sources of microglial heterogeneity. Molecular quantitative trait locus analyses implicate variants involved in neurological diseases through effects on gene expression and splicing.

60 citations


Cited by
More filters
Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations

Journal ArticleDOI
03 Oct 2019-Cell
TL;DR: Progress in imaging and genetics and the advent of single-cell technologies provided new insights into the much more complex and fascinating biology of microglia, and their functions in health and disease were better defined.

612 citations

Journal ArticleDOI
TL;DR: The recent emergence of novel single- cell techniques, such as cytometry by time-of-flight mass spectrometry and single-cell RNA sequencing, have enabled scientists to overcome limitations and reveal the surprising context-dependent heterogeneity of microglia.

362 citations

Journal ArticleDOI
TL;DR: This review gathers, classifies, and describes known and recently discovered protein markers expressed by microglial cells in their different phenotypes, which include qualitative and semi-quantitative, general and specific, surface and intracellular proteins, as well as secreted molecules.
Abstract: Inflammatory processes and microglia activation accompany most of the pathophysiological diseases in the central nervous system. It is proven that glial pathology precedes and even drives the development of multiple neurodegenerative conditions. A growing number of studies point out the importance of microglia in brain development as well as in physiological functioning. These resident brain immune cells are divergent from the peripherally infiltrated macrophages, but their precise in situ discrimination is surprisingly difficult. Microglial heterogeneity in the brain is especially visible in their morphology and cell density in particular brain structures but also in the expression of cellular markers. This often determines their role in physiology or pathology of brain functioning. The species differences between rodent and human markers add complexity to the whole picture. Furthermore, due to activation, microglia show a broad spectrum of phenotypes ranging from the pro-inflammatory, potentially cytotoxic M1 to the anti-inflammatory, scavenging, and regenerative M2. A precise distinction of specific phenotypes is nowadays essential to study microglial functions and tissue state in such a quickly changing environment. Due to the overwhelming amount of data on multiple sets of markers that is available for such studies, the choice of appropriate markers is a scientific challenge. This review gathers, classifies, and describes known and recently discovered protein markers expressed by microglial cells in their different phenotypes. The presented microglia markers include qualitative and semi-quantitative, general and specific, surface and intracellular proteins, as well as secreted molecules. The information provided here creates a comprehensive and practical guide through the current knowledge and will facilitate the choosing of proper, more specific markers for detailed studies on microglia and neuroinflammatory mechanisms in various physiological as well as pathological conditions. Both basic research and clinical medicine need clearly described and validated molecular markers of microglia phenotype, which are essential in diagnostics, treatment, and prevention of diseases engaging glia activation.

330 citations

Journal ArticleDOI
TL;DR: A review of current knowledge on regional heterogeneity of microglia in the context of their diverse neighboring neurons and other glia may provide an important clue for future development of innovative therapies for neuropsychiatric disorders.
Abstract: Microglia have been recently shown to manifest a very interesting phenotypical heterogeneity across different regions in the mammalian central nervous system (CNS). However, the underlying mechanism and functional meaning of this phenomenon are currently unclear. Baseline diversities of adult microglia in their cell number, cellular and subcellular structures, molecular signature as well as relevant functions have been discovered. But recent transcriptomic studies using bulk RNAseq and single-cell RNAseq have produced conflicting results on region-specific signatures of microglia. It is highly speculative whether such spatial heterogeneity contributes to varying sensitivities of individual microglia to the same physiological and pathological signals in different CNS regions, and hence underlie their functional relevance for CNS disease development. This review aims to thoroughly summarize up-to-date knowledge on this specific topic and provide some insights on the potential underlying mechanisms, starting from microgliogenesis. Understanding regional heterogeneity of microglia in the context of their diverse neighboring neurons and other glia may provide an important clue for future development of innovative therapies for neuropsychiatric disorders.

266 citations