scispace - formally typeset
Search or ask a question
Author

G. te Velde

Bio: G. te Velde is an academic researcher from VU University Amsterdam. The author has contributed to research in topics: Fock space & Numerical integration. The author has an hindex of 13, co-authored 15 publications receiving 14641 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss attempts to achieve linear scaling for the calculation of the matrix elements of the exchange-correlation and Coulomb potentials within a particular implementation (the Amsterdam density functional, ADF, code) of the KS method.
Abstract: One of the most important steps in a Kohn-Sham (KS) type density functional theory calculation is the construction of the matrix of the KS operator (the “Fock” matrix). It is desirable to develop an algorithm for this step that scales linearly with system size. We discuss attempts to achieve linear scaling for the calculation of the matrix elements of the exchange-correlation and Coulomb potentials within a particular implementation (the Amsterdam density functional, ADF, code) of the KS method. In the ADF scheme the matrix elements are completely determined by 3D numerical integration, the value of the potentials in each grid point being determined with the help of an auxiliary function representation of the electronic density. Nearly linear scaling for building the total Fock matrix is demonstrated for systems of intermediate size (in the order of 1000 atoms). For larger systems further development is desirable for the treatment of the Coulomb potential.

2,758 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical integration package is presented for three-dimensional integrals occurring in electronic structure calculations, applicable to all polyatomic systems with periodicity in 0 (molecules), 1 (chains), 2 (slabs), or 3 dimensions (crystals).

1,682 citations

Journal ArticleDOI
TL;DR: In this article, two three-dimensional numerical schemes are presented for molecular integrands such as matrix alements of one-electron operators occuring in the Fock operator and expectation values of one electron operators describing molecular properties.
Abstract: Two three-dimensional numerical schemes are presented for molecular integrands such as matrix alements of one-electron operators occuring in the Fock operator and expectation values of one-electron operators describing molecular properties. The schemes are based on a judicious partitioning of space so that product-Gauss integration rules can be used in each region. Convergence with the number of integration points is such that very high accuracy (8–10 digits) may be obtained with obtained with a modest number of points. The use of point group symmetry to reduce the required number of points is discussed. Examples are given for overlap, nuclear potential, and electric field gradient integrals.

689 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: In this paper, a method for accurate and efficient local density functional calculations (LDF) on molecules is described and presented with results using fast convergent threedimensional numerical integrations to calculate the matrix elements occurring in the Ritz variation method.
Abstract: A method for accurate and efficient local density functional calculations (LDF) on molecules is described and presented with results The method, Dmol for short, uses fast convergent three‐dimensional numerical integrations to calculate the matrix elements occurring in the Ritz variation method The flexibility of the integration technique opens the way to use the most efficient variational basis sets A practical choice of numerical basis sets is shown with a built‐in capability to reach the LDF dissociation limit exactly Dmol includes also an efficient, exact approach for calculating the electrostatic potential Results on small molecules illustrate present accuracy and error properties of the method Computational effort for this method grows to leading order with the cube of the molecule size Except for the solution of an algebraic eigenvalue problem the method can be refined to quadratic growth for large molecules

8,673 citations

Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

Journal ArticleDOI
TL;DR: The cclib platform as discussed by the authors is a platform for the development of package-independent computational chemistry algorithms, which can automatically detect, parse, and convert the extracted information into a standard internal representation.
Abstract: There are now a wide variety of packages for electronic structure calculations, each of which differs in the algorithms implemented and the output format. Many computational chemistry algorithms are only available to users of a particular package despite being generally applicable to the results of calculations by any package. Here we present cclib, a platform for the development of package-independent computational chemistry algorithms. Files from several versions of multiple electronic structure packages are automatically detected, parsed, and the extracted information converted to a standard internal representation. A number of population analysis algorithms have been implemented as a proof of principle. In addition, cclib is currently used as an input filter for two GUI applications that analyze output files: PyMOlyze and GaussSum. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008

4,451 citations