scispace - formally typeset
Search or ask a question
Author

G. U. Chibuike

Other affiliations: University of Nigeria, Nsukka
Bio: G. U. Chibuike is an academic researcher from Massey University. The author has contributed to research in topics: Soil water & Denitrification. The author has an hindex of 6, co-authored 16 publications receiving 775 citations. Previous affiliations of G. U. Chibuike include University of Nigeria, Nsukka.

Papers
More filters
Journal ArticleDOI
TL;DR: Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils as discussed by the authors, however, success of this approach largely depends on the species of organisms involved in the process.
Abstract: Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

833 citations

Journal ArticleDOI
TL;DR: A generalized assessment of the current state of knowledge on the usefulness of SOM based on its influence on the physical, chemical and biological properties and processes of soils is provided, with emphasis on the effect of SOM on soil structure and availability of plant nutrients.
Abstract: Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.

132 citations

Journal ArticleDOI
TL;DR: Mycorrhiza-assisted remediation (MAR) is a sustainable method of remediation that uses natural organisms for soil remediation and improves the structure of the soil and helps in plant nutrient acquisition.
Abstract: Mycorrhiza-assisted remediation (MAR) is a sustainable method of remediation that uses natural organisms for soil remediation. It is a technique that not only ensures the removal of soil pollutants but also improves the structure of the soil and helps in plant nutrient acquisition. Thus, it helps in vegetation/revegetation of polluted soils after treatment. MAR can be used for the removal of both organic and inorganic soil pollutants. However, its efficiency may be influenced by the species and origin of the mycorrhizal fungi, the type of plants colonized, and the type and concentration of the pollutant. Various soil organisms interact with mycorrhizal fungi to improve the efficiency of MAR. However, more research is needed in order to fully understand the mechanisms of MAR. Key words: Mycorrhiza-assisted remediation (MAR), mycorrhiza, pollutants, soil remediation, soil organisms.

39 citations

Journal ArticleDOI
TL;DR: In this paper, the concentration of potentially harmful elements (Cu, Pb, Zn, Mo, Ni, Co, Cd, Cr, Mn and As) in agricultural soils and plants (tubers, fruity and leafy vegetables) and their possible health risk implications on human in the lead-zinc mining districts of Ishiagu, Nigeria.

31 citations

Journal Article
TL;DR: In this article, the contributions of microorganisms to soil fertility in three land use types in an Ultisol of southeastern Nigeria were determined in order to determine the soil chemical properties and microbial populations.
Abstract: Soil chemical properties and microbial populations were determined in this study in order to compare the contributions of microorganisms to soil fertility in three land use types in an Ultisol of southeastern Nigeria. A total of 27 samples were collected from 0-20 cm depth as follows: 21 samples from a fallow land (3 replicates from 7 plots) that has been under 10-year fallow, three samples from an adjacent forestland and finally, three samples from an adjacent cultivated land owned by a farmer. These samples were air dried, passed through a 2-mm sieve before soil properties were determined following standard methods. Fresh soil samples were used to determine the number of soil microorganisms via the dilution spread plate technique using the nutrient agar for bacteria and potato dextrose agar for fungi. Results showed that the forest and fallow lands had significantly (P < 0.05) lower mean pH value, available P, exchangeable K and Na, but significantly higher exchangeable H and bacteria population than the cultivated land. The mean exchangeable Ca was significantly (p < 0.05) higher in the cultivated land than in the fallow land but similar to that from the forestland. The fungi population was significantly (p < 0.05) higher in the forestland than in others which are similar statistically. The mean soil organic matter, total N, exchangeable Mg, exchangeable Al and CEC were statistically similar in all the land use types. Contributions of microorganisms to soil fertility were generally more in the uncultivated lands, an indication that tillage operations may have affected the microbial populations. Significant correlations (p < 0.05) obtained between some soil chemical properties and microbial densities signify important roles microorganism play in soil nutrient build up.

19 citations


Cited by
More filters
Journal ArticleDOI
01 Sep 2020-Heliyon
TL;DR: The physiological and biochemical effects of each heavy metal bioaccumulation in humans and the level of gravity and disquieting factor of the disease are shown.

1,185 citations

Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Journal ArticleDOI
TL;DR: The sources of toxic heavy metals are discussed, the groups of microorganisms with biosorbent potential for heavy metal removal are described and the use of microbial biosorbents is eco-friendly and cost effective.
Abstract: Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal.

1,035 citations

Journal ArticleDOI
TL;DR: Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils as discussed by the authors, however, success of this approach largely depends on the species of organisms involved in the process.
Abstract: Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

833 citations

Journal ArticleDOI
TL;DR: The toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation are discussed and the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate is emphasized.
Abstract: Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.

631 citations