scispace - formally typeset
Search or ask a question
Author

G. Vinitha

Bio: G. Vinitha is an academic researcher from VIT University. The author has contributed to research in topics: Single crystal & Crystal. The author has an hindex of 23, co-authored 251 publications receiving 2106 citations. Previous affiliations of G. Vinitha include B. S. Abdur Rahman University & Anna University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a single crystal XRD was used to study the lattice structure of a high-transparency nonlinear Thiourea cadmium hydrogen borate (TCHB) single crystal for optoelectronic applications.

2 citations

Journal ArticleDOI
TL;DR: In this article , the synthesis of Cr3+ doped PbWO4 nanoparticles with different concentration of Cr 3+ through chemical method was reported, and the structural, morphological and optical characterization was studied through X-ray diffraction (XRD), Raman, UV-Visible spectra, Photoluminescence, Xray photo electron spectroscopy (XPS) and Transmission electron Microscopy (HR-TEM).

2 citations

Journal ArticleDOI
TL;DR: In this article, a crystal piperazine calcium chloride (PCC) was synthesized and grown successfully by slow evaporation solution growth technique at room temperature, and the wave number band assignments of the synthesized material were identified by using Fourier Transform Infrared spectroscopy.
Abstract: Optical quality crystal piperazine calcium chloride (PCC) was synthesized and grown successfully by slow evaporation solution growth technique at room temperature. Well-defined Bragg’s peak in powder x-ray diffraction analysis confirms the crystalline nature of the grown sample PCC. Unit cell parameters values that were calculated using single crystal x-ray diffraction analysis confirms that the crystal belongs to the monoclinic crystal system. The wave number band assignments of the synthesized material are identified by using Fourier Transform Infrared spectroscopy. Linear optical study shows that the UV cut-off wavelength was found to be 260 nm and also the optical energy band gap was calculated using UV data. Maximum emission spectra of wavelength 441 nm and 477 nm are evident in the emission of blue laser from the Florescence (PL) spectra. The dielectric constant and dielectric loss of the grown PCC crystal were analyzed as a function of different frequencies for different temperatures. As grown PCC crystal was subjected to thermal analysis to find the weight-loss and decomposition point using TG–DTA curve. Work hardening coefficient of as grown PCC crystal was 2.36, which is evidence that the crystal belongs to soft category material and also the mechanical parameters are calculated. Third order nonlinear optical property was analyzed using Z-scan technique, which shows that the crystal PCC obeys the third harmonic generation properties to enhance the optical device applications.

2 citations

Journal ArticleDOI
TL;DR: In this paper, two organic-inorganic hybrids viz., bis(1,2,3,4-tetrahydroisoquinolin-2-ium) hexachlorostannate(IV) (1) and bis( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38,

2 citations

Journal ArticleDOI
TL;DR: In this paper , a single crystal of l-Alanine Barium Chloride (LABC) was used to produce a semi-organic nonlinear optical material, which can be seen in the results of a single-crystal XRD analysis.

2 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
TL;DR: This Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting and describes the known mechanisms of optical limiting for the different types of materials.
Abstract: The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the functi...

424 citations

Journal ArticleDOI
TL;DR: In this article, a review highlights the applied protocols to ameliorate the photoactivity of graphitic carbon nitride (g-C3N4) based nanocomposites through combining with various materials.

381 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the recent advances in nonlinear optics and the applications of two-dimensional (2D) materials and highlight a few representative current applications of 2D materials to photonic and optoelectronic devices.
Abstract: In this review, we survey the recent advances in nonlinear optics and the applications of two-dimensional (2D) materials. We briefly cover the key developments pertaining to research in the nonlinear optics of graphene, the quintessential 2D material. Subsequently, we discuss the linear and nonlinear optical properties of several other 2D layered materials, including transition metal chalcogenides, black phosphorus, hexagonal boron nitride, perovskites, and topological insulators, as well as the recent progress in hybrid nanostructures containing 2D materials, such as composites with dyes, plasmonic particles, 2D crystals, and silicon integrated structures. Finally, we highlight a few representative current applications of 2D materials to photonic and optoelectronic devices.

235 citations

Journal ArticleDOI
TL;DR: In this article, the nonlinear optical properties of metal nanoparticles (including copper, silver, gold, and bismuth nanoparticles) doped in various bases have been discussed.
Abstract: Metal nanoparticles (MNPs) hold great technological promise because of the possibility of engineering their electronic and optical properties through material design. One of the effective methods to fabricate MNPs is ion implantation. In this review, recent results on the nonlinear optical properties of nanoparticles (including copper, silver, gold, and bismuth nanoparticles) doped in various bases have been discussed. Some specific optical nonlinear properties, such as nonlinear refraction, two-photon absorption, and optical limiting, for femtosecond, picosecond, and nanosecond laser pulses have also been covered. In addition to ion implantation, we have summarized several other methods for the preparation of composite materials, and Z-scan has been used to study the nonlinear optical properties of these materials.

232 citations