scispace - formally typeset
Search or ask a question
Author

G. Ye Li

Bio: G. Ye Li is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Multiplexing & MIMO. The author has an hindex of 1, co-authored 1 publications receiving 815 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper addresses basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques.
Abstract: Orthogonal frequency-division multiplexing (OFDM) effectively mitigates intersymbol interference (ISI) caused by the delay spread of wireless channels. Therefore, it has been used in many wireless systems and adopted by various standards. In this paper, we present a comprehensive survey on OFDM for wireless communications. We address basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques. We also describe the applications of OFDM in current systems and standards.

915 citations


Cited by
More filters
Journal ArticleDOI

2,415 citations

Dissertation
04 Nov 2008
TL;DR: In this paper, the authors propose a solution to solve the problem of the problem: this paper ] of the "missing link" problem, i.i.p.II.
Abstract: II

655 citations

Book ChapterDOI
01 Jan 2004
TL;DR: This chapter contains sections titled: Introduction Overview of Multicarrier CDMA Systems Channel Model Performance of MC-CDMA System Performance of Overlapping MulticARrier DS-CDma Systems Performance of MultICarrier DS/MC systems Performance of AMC systems performance of SFH/MC DS/CDMA systems.
Abstract: This chapter contains sections titled: Introduction Overview of Multicarrier CDMA Systems Channel Model Performance of MC-CDMA System Performance of Overlapping Multicarrier DS-CDMA Systems Performance of Multicarrier DS-CDMA-I Systems Performance of AMC DS-CDMA Systems Performance of SFH/MC DS-CDMA Systems Chapter Summary and Conclusion ]]>

511 citations

Journal ArticleDOI
TL;DR: This article provides a review of some modulation formats suited for 5G, enriched by a comparative analysis of their performance in a cellular environment, and by a discussion on their interactions with specific 5G ingredients.
Abstract: Fifth-generation (5G) cellular communications promise to deliver the gigabit experience to mobile users, with a capacity increase of up to three orders of magnitude with respect to current long-term evolution (LTE) systems There is widespread agreement that such an ambitious goal will be realized through a combination of innovative techniques involving different network layers At the physical layer, the orthogonal frequency division multiplexing (OFDM) modulation format, along with its multiple-access strategy orthogonal frequency division multiple access (OFDMA), is not taken for granted, and several alternatives promising larger values of spectral efficiency are being considered This article provides a review of some modulation formats suited for 5G, enriched by a comparative analysis of their performance in a cellular environment, and by a discussion on their interactions with specific 5G ingredients The interaction with a massive multiple-input, multiple-output (MIMO) system is also discussed by employing real channel measurements

446 citations

01 Jan 2013
TL;DR: In this article, two major types of pilot arrangement such as block type and comb-type pilot have been focused employing Least Square Error (LSE) and minimum mean square error (MMSE) channel estimators.
Abstract: Orthogonal frequency division multiplexing (OFDM) provides an effective and low complexity means of eliminating inter symbol interference for transmission over frequency selective fading channels. This technique has eceived a lot of interest in mobile communication research as the radio channel is usually frequency selective and time variant. In OFDM system, modulation may be coherent or differential. Channel state information (CSI) is required for the OFDM receiver to perform coherent detection or diversity combining, if multiple transmit and receive antennas are deployed. In practice, CSI can be reliably estimated at the receiver by transmitting pilots along with data symbols. Pilot symbol assisted channel estimation is especially attractive for wireless links, where the channel is time-varying. When sing differential modulation there is no need for a channel estimate but its performance is inferior to coherent system. In this paper we investigate and compare various efficient pilot based channel estimation schemes for OFDM systems. In this present study, two major types of pilot arrangement such as block type and comb-type pilot have been focused employing Least Square Error (LSE) and Minimum Mean Square Error (MMSE) channel estimators. Block type pilot sub-carriers is especially suitable for slow-fading radio channels whereas comb type pilots provide better resistance to fast fading channels. Also comb type pilot arrangement is sensitive to frequency selectivity when comparing to block type arrangement. The channel estimation algorithm based on comb type pilots is divided into pilot signal estimation and channel interpolation. The symbol error rate (SER) performances of OFDM system for both block type and comb type pilot subcarriers are presented in this paper.

412 citations