scispace - formally typeset
Search or ask a question
Author

G. Yu

Bio: G. Yu is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Photoconductivity & Light intensity. The author has an hindex of 18, co-authored 34 publications receiving 10459 citations.

Papers
More filters
Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: Time-resolved transient PC results, subnanosecond to 0.5 μs, are presented from poly[2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) and poly(3-octylthiophene) (P3OT), and from conducting polymer films sensitized with several concentrations of C 60.
Abstract: We have investigated the effect of photoinduced electron transfer on the photoconductivity (PC) of conducting polymer-${\mathrm{C}}_{60}$ films by comparing the photoconductivity (carrier generation and carrier transport) of the conducting polymer sensitized with ${\mathrm{C}}_{60}$ with that of the conducting polymer alone. We present time-resolved transient PC results, subnanosecond to 0.5 \ensuremath{\mu}s, obtained from poly[2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) and poly(3-octylthiophene) (P3OT), and from conducting polymer films sensitized with several concentrations of ${\mathrm{C}}_{60}$. Both the magnitude and the lifetime of the transient PC increase substantially on increasing the concentration of ${\mathrm{C}}_{60}$. The results imply that quantum efficiency for photogeneration of charge carriers is increased by photoinduced electron transfer and that early time recombination is inhibited by the spatial separation of the electron and hole on the ${\mathrm{C}}_{60}$ and the conducting polymer, respectively. The greater enhancement of the transient PC in MEH-PPV (nearly two orders of magnitude with the addition of a few percent of ${\mathrm{C}}_{60}$) than in P3OT (nearly one order of magnitude with the addition of a comparable amount of ${\mathrm{C}}_{60}$) suggests a higher probability of early time recombination in pristine MEH-PPV. As a result of the enhancement in the photogeneration efficiency and the carrier lifetime, the spectral response of the steady-state PC in both MEH-PPV/${\mathrm{C}}_{60}$ and P3OT/${\mathrm{C}}_{60}$ films is significantly enhanced throughout the entire spectral range from the near infrared to the ultraviolet.

214 citations

Journal ArticleDOI
TL;DR: The spectral response and slow decay of the steady-state photoconductivity in poly(p-phenylenevinylene) (PPV) films is reported, consistent with a description of the electronic structure of PPV in terms of a semiconductor band model (rather than an exciton model).
Abstract: We report the spectral response and slow decay of the steady-state photoconductivity in poly(p-phenylenevinylene) (PPV) films. The spectral response of the photoconductivity is in good agreement with that calculated from the absorption data with the assumption of rapid recombination at the surface of the film; the results indicate direct photogeneration of free charge carriers via an interband transition. The photoconductivity is, therefore, consistent with a description of the electronic structure of PPV in terms of a semiconductor band model (rather than an exciton model). The very slow stretched-exponential relaxation of the photoinduced conductivity is reminiscent of the persistent photoconductivity observed in inorganic semiconductors. By assuming that the photocurrent is carried predominantly by mobile polarons near the surface, one can construct a model for the persistent photoconductivity in which the recombination of long-lived bipolarons is inhibited in the bulk where bipolarons have a lower free energy than polarons. The persistent photoconductivity, therefore, is caused by the slow dispersive diffusion of photogenerated bipolarons to the surface where they dissociate into polarons and where both polaron transport and recombination occur.

132 citations

Journal ArticleDOI
TL;DR: In this article, the enhancement of electroluminescence (EL) from blends of poly(3-hexylthiophene) (P3HT) in poly(2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylene vinylene) (MEH-PPV) was demonstrated.

104 citations


Cited by
More filters
Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
02 Nov 2012-Science
TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Abstract: The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

9,158 citations

Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Abstract: Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.

7,018 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations