scispace - formally typeset
Search or ask a question
Author

G. Yuval

Bio: G. Yuval is an academic researcher from Bell Labs. The author has contributed to research in topics: Ising model & Kondo effect. The author has an hindex of 2, co-authored 2 publications receiving 570 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the simplest Kondo problem is treated exactly in the ferromagnetic case, and given exact bounds for the relevant physical properties in the antiferromagnetic cases, by use of a scaling technique on an asymptotically exact expression for the ground-state properties given earlier.
Abstract: The simplest Kondo problem is treated exactly in the ferromagnetic case, and given exact bounds for the relevant physical properties in the antiferromagnetic case, by use of a scaling technique on an asymptotically exact expression for the ground-state properties given earlier. The theory also solves the $n=2$ case of the one-dimensional Ising problem. The ferromagnetic case has a finite spin, while the antiferromagnetic case has no truly singular $T\ensuremath{\rightarrow}0$ properties (e.g., it has finite $\ensuremath{\chi}$).

403 citations

Journal ArticleDOI
G. Yuval1, Peter J. Anderson1
TL;DR: In this article, the Kondo problem is shown to be equivalent to the thermodynamics of charged rods moving on a circle, or to that of an Ising model with inverse-square interaction.
Abstract: Nozi\`eres and De Dominicis's one-body theory of the x-ray singularity is extended to the Kondo effect, and also to the finite-etmperature case. The Kondo problem is shown to be equivalent to the thermodynamics of charged rods moving on a circle, or to that of an Ising model with inverse-square interaction.

197 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new definition of order called topological order is proposed for two-dimensional systems in which no long-range order of the conventional type exists, and the possibility of a phase transition characterized by a change in the response of the system to an external perturbation is discussed in the context of a mean field type of approximation.
Abstract: A new definition of order called topological order is proposed for two-dimensional systems in which no long-range order of the conventional type exists. The possibility of a phase transition characterized by a change in the response of the system to an external perturbation is discussed in the context of a mean field type of approximation. The critical behaviour found in this model displays very weak singularities. The application of these ideas to the xy model of magnetism, the solid-liquid transition, and the neutral superfluid are discussed. This type of phase transition cannot occur in a superconductor nor in a Heisenberg ferromagnet.

6,371 citations

Journal ArticleDOI
TL;DR: The dynamical mean field theory of strongly correlated electron systems is based on a mapping of lattice models onto quantum impurity models subject to a self-consistency condition.
Abstract: We review the dynamical mean-field theory of strongly correlated electron systems which is based on a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. This mapping is exact for models of correlated electrons in the limit of large lattice coordination (or infinite spatial dimensions). It extends the standard mean-field construction from classical statistical mechanics to quantum problems. We discuss the physical ideas underlying this theory and its mathematical derivation. Various analytic and numerical techniques that have been developed recently in order to analyze and solve the dynamical mean-field equations are reviewed and compared to each other. The method can be used for the determination of phase diagrams (by comparing the stability of various types of long-range order), and the calculation of thermodynamic properties, one-particle Green's functions, and response functions. We review in detail the recent progress in understanding the Hubbard model and the Mott metal-insulator transition within this approach, including some comparison to experiments on three-dimensional transition-metal oxides. We present an overview of the rapidly developing field of applications of this method to other systems. The present limitations of the approach, and possible extensions of the formalism are finally discussed. Computer programs for the numerical implementation of this method are also provided with this article.

5,230 citations

Journal ArticleDOI
TL;DR: In this article, a functional-integral approach to the dynamics of a two-state system coupled to a dissipative environment is presented, and an exact and general prescription for the reduction, under appropriate circumstances, of the problem of a system tunneling between two wells in the presence of dissipative environments to the spin-boson problem is given.
Abstract: This paper presents the results of a functional-integral approach to the dynamics of a two-state system coupled to a dissipative environment. It is primarily an extended account of results obtained over the last four years by the authors; while they try to provide some background for orientation, it is emphatically not intended as a comprehensive review of the literature on the subject. Its contents include (1) an exact and general prescription for the reduction, under appropriate circumstances, of the problem of a system tunneling between two wells in the presence of a dissipative environment to the "spin-boson" problem; (2) the derivation of an exact formula for the dynamics of the latter problem; (3) the demonstration that there exists a simple approximation to this exact formula which is controlled, in the sense that we can put explicit bounds on the errors incurred in it, and that for almost all regions of the parameter space these errors are either very small in the limit of interest to us (the "slow-tunneling" limit) or can themselves be evaluated with satisfactory accuracy; (4) use of these results to obtain quantitative expressions for the dynamics of the system as a function of the spectral density $J(\ensuremath{\omega})$ of its coupling to the environment. If $J(\ensuremath{\omega})$ behaves as ${\ensuremath{\omega}}^{s}$ for frequencies of the order of the tunneling frequency or smaller, the authors find for the "unbiased" case the following results: For $sl1$ the system is localized at zero temperature, and at finite $T$ relaxes incoherently at a rate proportional to $\mathrm{exp}\ensuremath{-}{(\frac{{T}_{0}}{T})}^{1\ensuremath{-}s}$. For $sg2$ it undergoes underdamped coherent oscillations for all relevant temperatures, while for $1lsl2$ there is a crossover from coherent oscillation to overdamped relaxation as $T$ increases. Exact expressions for the oscillation and/or relaxation rates are presented in all these cases. For the "ohmic" case, $s=1$, the qualitative nature of the behavior depends critically on the dimensionless coupling strength $\ensuremath{\alpha}$ as well as the temperature $T$: over most of the ($\ensuremath{\alpha}$,$T$) plane (including the whole region $\ensuremath{\alpha}g1$) the behavior is an incoherent relaxation at a rate proportional to ${T}^{2\ensuremath{\alpha}\ensuremath{-}1}$, but for low $T$ and $0l\ensuremath{\alpha}l\frac{1}{2}$ the authors predict a combination of damped coherent oscillation and incoherent background which appears to disagree with the results of all previous approximations. The case of finite bias is also discussed.

4,047 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

Journal ArticleDOI
TL;DR: In this paper, the critical properties of the xy model with nearest-neighbour interactions on a two-dimensional square lattice were studied by a renormalization group technique, and the correlation length is found to diverge faster than any power of the deviation from the critical temperature.
Abstract: The critical properties of the xy model with nearest-neighbour interactions on a two-dimensional square lattice are studied by a renormalization group technique. The mean magnetization is zero for all temperatures, and the transition is from a state of finite to one of infinite susceptibility. The correlation length is found to diverge faster than any power of the deviation from the critical temperature. Analogues of the strong scaling laws are derived and the critical exponents, eta , and delta , are the same as for the two-dimensional Ising model.

1,546 citations