scispace - formally typeset
Search or ask a question
Author

Gabor Kovacs

Bio: Gabor Kovacs is an academic researcher from Swiss Federal Laboratories for Materials Science and Technology. The author has contributed to research in topics: Elastomer & Dielectric elastomers. The author has an hindex of 21, co-authored 51 publications receiving 1917 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an active structure composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration, has been proposed to exhibit uniaxial contractive deformations, while being exposed to external tensile forces.
Abstract: This paper presents a novel approach for active structures driven by soft dielectric electro-active polymers (EAPs), which can perform contractive displacements at external tensile load. The active structure is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. The proposed active structure has the capability of exhibiting uniaxial contractive deformations, while being exposed to external tensile forces. The serial arrangement of active segments has one contracting degree of freedom in the thickness direction of the dielectric EAP film layers. Due to the envisaged tension force transmission capability, special attention is paid to the electrode design which is of paramount importance with regard to functionality of the actuator. A compliant electrode system with anisotropic deformation properties is presented based on nano scale carbon powder. In experiments, the free deformation as well as the contractive motion under external tensile loading of several actuator configurations with different setups is characterized. These involve the study of various sizes and numbers of stacked film layers as well as different electrode designs.

341 citations

Journal ArticleDOI
TL;DR: In this article, a voltage-induced deformation of a dielectric elastomer membrane was demonstrated under equal-biaxial and uniaxial forces, as well as on fiber-constrained membranes.
Abstract: A membrane of a dielectric elastomer deforms when a voltage is applied through its thickness. The achievable voltage-induced deformation is strongly affected by how mechanical loads are applied. Large voltage-induced deformation has been demonstrated for a membrane under equal-biaxial forces, but only small voltage-induced deformation has been observed for a membrane under a uniaxial force. This difference is interpreted here theoretically. The theory also predicts that, when the deformation of a membrane is constrained in one direction, a voltage applied through the thickness of the membrane can cause it to deform substantially in the other direction. Experiments are performed on membranes under equal-biaxial forces and uniaxial forces, as well as on fiber-constrained membranes of two types: a dielectric elastomer membrane with carbon fibers on both faces, and two dielectric elastomer membranes sandwiching nylon fibers. The experimental observations are compared with the theory.

239 citations

Journal ArticleDOI
TL;DR: In this article, a comparison between Dow Corning silicone and 3M acrylic elastomers was made based on a set of six electromechanical tests for actuator applications, and the silicone elastomer showed a fast EMECanical response (3 s) with good reproducibility and the dissipated work is negligible and not frequency dependent.
Abstract: Soft elastomers, mostly silicones and acrylics, are interesting candidates as dielectric materials in electroactive polymer actuator technology. Generally, characteristics like large strain, high stress, high energy density, good efficiency and high response speed are required for actuator applications. However, some of these material properties may be contradictory. For this reason a comparison between Dow Corning silicone and 3M acrylic elastomers was made based on a set of six electromechanical tests for actuator applications. The silicone elastomer shows a fast electromechanical response (3 s) with good reproducibility and the dissipated work is negligible and not frequency dependent. It also shows a stable mechanical behaviour over a wide temperature range. In contrast, the acrylic elastomer shows a slow electromechanical response with poor reproducibility. The dissipated work of the acrylic elastomer is significant: a strong frequency and temperature dependency of the dissipated work is observed for this material. The Dow Corning silicone (DC 3481) is a better material for many applications, where activation strains of less than 10% are sufficient. However, in applications where higher strains are required, it might be obligatory to use acrylic elastomers, because only these have the potential for use with activation strains beyond 10%. The electrical activation of a circular specimen is most useful in order to evaluate a material as a dielectric in electroactive polymer actuators. Copyright © 2009 Society of Chemical Industry

230 citations

Journal ArticleDOI
TL;DR: The first arm wrestling match between a human arm and a robotic arm driven by electroactive polymers (EAP) was held at the EAPAD conference in 2005 as mentioned in this paper.
Abstract: The first arm wrestling match between a human arm and a robotic arm driven by electroactive polymers (EAP) was held at the EAPAD conference in 2005. The primary objective was to demonstrate the potential of the EAP actuator technology for applications in the field of robotics and bioengineering. The Swiss Federal Laboratories for Materials Testing and Research (Empa) was one of the three organizations participating in this competition. The robot presented by Empa was driven by a system of rolled dielectric elastomer (DE) actuators. Based on the calculated stress condition in the rolled actuator, a low number of pre-strained DE film wrappings were found to be preferential for achieving the best actuator performance. Because of the limited space inside the robot body, more than 250 rolled actuators with small diameters were arranged in two groups according to the human agonist–antagonist muscle configuration in order to achieve an arm-like bidirectional rotation movement. The robot was powered by a computer-controlled high voltage amplifier. The rotary motion of the arm was activated and deactivated electrically by corresponding actuator groups. The entire development process of the robot is presented in this paper where the design of the DE actuators is of primary interest. Although the robot lost the arm wrestling contest against the human opponent, the DE actuators have demonstrated very promising performance as artificial muscles. The scientific knowledge gained during the development process of the robot has pointed out the challenges to be addressed for future improvement in the performance of rolled dielectric elastomer actuators.

208 citations

Journal ArticleDOI
TL;DR: Theoretical models contribute to a deeper understanding of EAP actuators and improve design and optimisation as discussed by the authors, which can be used to improve the design and optimization of actuators.
Abstract: Electroactive polymers (EAPs) are characterized by their ability to respond to external electric stimulation by displaying a significant shape or size displacement. Actuators, based on dielectric elastomers exhibiting low elastic stiffness and high dielectric constants, can produce high strain levels from 10 to 380 %. Typically, acrylic and silicone materials are used as dielectric layer in such actuators. Their potential to mimic the movement of animals, insects and even human body parts are increasingly of interest for researchers in the field of biomimetics, as well as more classical application fields like robotics. The control of the most important material properties, elastic moduli and dielectric constants of the dielectric elastomers and electrode materials, together with the control of fabrication parameters i.e. film thickness, electrode manufacturing as well as design of the actuator configuration allow the fabrication of tailor-made actuators, which match the necessary requirements for a given application. Theoretical models contribute to a deeper understanding of EAP actuators and improve design and optimisation.

165 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the important role and challenges of high-k polymer-matrix composites (PMC) in new technologies and discuss potential applications of highk PMC.

1,412 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: A class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts are described.
Abstract: Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts. We demonstrate a transparent actuator that can generate large strains and a transparent loudspeaker that produces sound over the entire audible range. The electromechanical transduction is achieved without electrochemical reaction. The ionic conductors have higher resistivity than many electronic conductors; however, when large stretchability and high transmittance are required, the ionic conductors have lower sheet resistance than all existing electronic conductors.

1,331 citations

Journal ArticleDOI
TL;DR: A new method, embedded-3D printing (e-3DP), is reported for fabricating strain sensors within highly conformal and extensible elastomeric matrices.
Abstract: A new method, embedded-3D printing (e-3DP), is reported for fabricating strain sensors within highly conformal and extensible elastomeric matrices. e-3DP allows soft sensors to be created in nearly arbitrary planar and 3D motifs in a highly programmable and seamless manner. Several embodiments are demonstrated and sensor performance is characterized.

1,311 citations

Journal ArticleDOI
TL;DR: A number of materials have been explored for their use as artificial muscles, but dielectric elastomers appear to provide the best combination of properties for true muscle-like actuation, and widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames.
Abstract: A number of materials have been explored for their use as artificial muscles Among these, dielectric elastomers (DEs) appear to provide the best combination of properties for true muscle-like actuation DEs behave as compliant capacitors, expanding in area and shrinking in thickness when a voltage is applied Materials combining very high energy densities, strains, and efficiencies have been known for some time To date, however, the widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames Recent advances seem poised to remove these restrictions and allow for the production of highly reliable, high-performance transducers for artificial muscle applications

1,299 citations