scispace - formally typeset
Search or ask a question
Author

Gabriel A. Rincon-Mora

Bio: Gabriel A. Rincon-Mora is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Inductor & Energy harvesting. The author has an hindex of 39, co-authored 172 publications receiving 8344 citations. Previous affiliations of Gabriel A. Rincon-Mora include Texas Instruments & Hastings Entertainment.


Papers
More filters
Journal ArticleDOI
TL;DR: An accurate, intuitive, and comprehensive electrical battery model is proposed and implemented in a Cadence environment that accounts for all dynamic characteristics of the battery, from nonlinear open-circuit voltage, current-, temperature-, cycle number-, and storage time-dependent capacity to transient response.
Abstract: Low power dissipation and maximum battery runtime are crucial in portable electronics. With accurate and efficient circuit and battery models in hand, circuit designers can predict and optimize battery runtime and circuit performance. In this paper, an accurate, intuitive, and comprehensive electrical battery model is proposed and implemented in a Cadence environment. This model accounts for all dynamic characteristics of the battery, from nonlinear open-circuit voltage, current-, temperature-, cycle number-, and storage time-dependent capacity to transient response. A simplified model neglecting the effects of self-discharge, cycle number, and temperature, which are nonconsequential in low-power Li-ion-supplied applications, is validated with experimental data on NiMH and polymer Li-ion batteries. Less than 0.4% runtime error and 30-mV maximum error voltage show that the proposed model predicts both the battery runtime and I-V performance accurately. The model can also be easily extended to other battery and power sourcing technologies.

1,986 citations

Journal ArticleDOI
TL;DR: In this article, a low-voltage, low dropout (LDO) regulator is proposed to minimize the quiescent current flow in a battery-operated system, which is an intrinsic performance parameter because it partially determines battery life.
Abstract: The demand for low-voltage, low drop-out (LDO) regulators is increasing because of the growing demand for portable electronics, i.e., cellular phones, pagers, laptops, etc. LDO's are used coherently with dc-dc converters as well as standalone parts. In power supply systems, they are typically cascaded onto switching regulators to suppress noise and provide a low noise output. The need for low voltage is innate to portable low power devices and corroborated by lower breakdown voltages resulting from reductions in feature size. Low quiescent current in a battery-operated system is an intrinsic performance parameter because it partially determines battery life. This paper discusses some techniques that enable the practical realizations of low quiescent current LDO's at low voltages and in existing technologies. The proposed circuit exploits the frequency response dependence on load-current to minimize quiescent current flow. Moreover, the output current capabilities of MOS power transistors are enhanced and drop-out voltages are decreased for a given device size. Other applications, like dc-dc converters, can also reap the benefits of these enhanced MOS devices. An LDO prototype incorporating the aforementioned techniques was fabricated. The circuit was operable down to input voltages of 1 V with a zero-load quiescent current flow of 23 /spl mu/A. Moreover, the regulator provided 18 and 50 mA of output current at input voltages of 1 and 1.2 V, respectively.

644 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a 1-V analog op-amp with rail-to-rail input and output ranges, which achieves 1.3 MHz unity gain and 57/spl deg/ phase margin for a 22pF load capacitance.
Abstract: This paper addresses the difficulty of designing 1-V capable analog circuits in standard digital complementary metal-oxide-semiconductor (CMOS) technology, Design techniques for facilitating 1-V operation are discussed and 1-V analog building block circuits are presented. Most of these circuits use the bulk-driving technique to circumvent the metal-oxide-semiconductor field-effect transistor turn-on (threshold) voltage requirement. Finally, techniques are combined within a 1-V CMOS operational amplifier with rail-to-rail input and output ranges. While consuming 300 /spl mu/W, the 1-V rail-to-rail CMOS op amp achieves 1.3-MHz unity-gain frequency and 57/spl deg/ phase margin for a 22-pF load capacitance.

408 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a noninverting buck-boost switching converter for low voltage, portable applications, which can dynamically adjust the output voltage from 0.4 to 4.0 V, while satisfying a maximum load current of 0.65 A from an input supply of 2.4-3.4 V.
Abstract: With the increasing use of low voltage portable devices and growing requirements of functionalities embedded into such devices, efficient power management techniques are needed for longer battery life. Given the highly variable nature of batteries (e.g., 2.7-4.2 V for Li-ion), systems often require supply voltages to be both higher and lower than the battery voltage (e.g., power amplifier for CDMA applications), while supplying significant current, which is most efficiently generated by a noninverting buck-boost switching converter. In this paper, the design and experimental results of a new dynamic, noninverting, synchronous buck-boost converter for low voltage, portable applications is reported. The converter's output voltage is dynamically adjustable (on-the-fly) from 0.4 to 4.0 V, while capable of supplying a maximum load current of 0.65 A from an input supply of 2.4-3.4 V. The worst-case response time of the converter for a 0.4 to 4 V step change in its output voltage (corresponding to a 0.2 to 2 V step at its reference input) is less than 300 /spl mu/sec and to a load-current step of 0 to 0.5 A is within 200 /spl mu/sec, yielding only a transient error of 40 mV in the output voltage. This paper also presents a nonmathematical, intuitive analysis of the time-averaged, small-signal model of a noninverting buck-boost converter.

334 citations

Proceedings ArticleDOI
04 Aug 2002
TL;DR: In this article, a new scheme for increasing the accuracy of current sensing when the discrete elements are not known is introduced, which measures the inductor value during the DC-DC controller startup.
Abstract: Current sensing is one of the most important functions on a smart power chip. Conventional current-sensing methods insert a resistor in the path of the current to be sensed. This method incurs significant power losses, especially when the current to be sensed is high. Lossless current-sensing methods address this issue by sensing the current without dissipating the power that passive resistors do. Six available lossless current sensing techniques are reviewed. A new scheme for increasing the accuracy of current sensing when the discrete elements are not known is introduced. The new scheme measures the inductor value during the DC-DC controller startup.

319 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.

1,230 citations

Patent
02 Aug 1998
TL;DR: In this paper, an electrically erasable programmable read-only memory (EEPROM) with a non-conducting charge trapping dielectric, such as silicon nitride, sandwiched between two silicon dioxide layers acting as electrical insulators is disclosed.
Abstract: An electrically erasable programmable read only memory (EEPROM) having a non conducting charge trapping dielectric, such as silicon nitride, sandwiched between two silicon dioxide layers acting as electrical insulators is disclosed. The invention includes a method of programming, reading and erasing the EEPROM device. The non conducting dielectric layer functions as an electrical charge trapping medium. A conducting gate layer is placed over the upper silicon dioxide layer. The memory device is programmed in the conventional manner, using hot electron programming, by applying programming voltages to the gate and the drain while the source is grounded. Hot electrons are accelerated sufficiently to be injected into the region of the trapping dielectric layer near the drain. The device, however, is read in the opposite direction from which it was written, meaning voltages are applied to the gate and the source while the drain is grounded. Application of relatively low gate voltages combined with reading in the reverse direction greatly reduces the potential across the trapped charge region. This permits much shorter programming times by amplifying the effect of the charge trapped in the localized trapping region. In addition, the memory cell can be erased by applying suitable erase voltages to the gate and the drain so as to cause electrons to be removed from the charge trapping region of the nitride layer. Similar to programming, a narrower charge trapping region enables much faster erase cycles.

1,195 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the battery state of charge estimation and its management system for the sustainable future electric vehicles (EVs) applications is presented, which can guarantee a reliable and safe operation and assess the battery SOC.
Abstract: Due to increasing concerns about global warming, greenhouse gas emissions, and the depletion of fossil fuels, the electric vehicles (EVs) receive massive popularity due to their performances and efficiencies in recent decades. EVs have already been widely accepted in the automotive industries considering the most promising replacements in reducing CO2 emissions and global environmental issues. Lithium-ion batteries have attained huge attention in EVs application due to their lucrative features such as lightweight, fast charging, high energy density, low self-discharge and long lifespan. This paper comprehensively reviews the lithium-ion battery state of charge (SOC) estimation and its management system towards the sustainable future EV applications. The significance of battery management system (BMS) employing lithium-ion batteries is presented, which can guarantee a reliable and safe operation and assess the battery SOC. The review identifies that the SOC is a crucial parameter as it signifies the remaining available energy in a battery that provides an idea about charging/discharging strategies and protect the battery from overcharging/over discharging. It is also observed that the SOC of the existing lithium-ion batteries have a good contribution to run the EVs safely and efficiently with their charging/discharging capabilities. However, they still have some challenges due to their complex electro-chemical reactions, performance degradation and lack of accuracy towards the enhancement of battery performance and life. The classification of the estimation methodologies to estimate SOC focusing with the estimation model/algorithm, benefits, drawbacks and estimation error are extensively reviewed. The review highlights many factors and challenges with possible recommendations for the development of BMS and estimation of SOC in next-generation EV applications. All the highlighted insights of this review will widen the increasing efforts towards the development of the advanced SOC estimation method and energy management system of lithium-ion battery for the future high-tech EV applications.

1,150 citations

Patent
31 Jan 2012
TL;DR: In this article, a closed-loop control system for an electrosurgical generator that generates electrosurgery energy is described, which includes a user interface for selecting at least one pre-surgical parameter, such as the type of surgical instrument operatively connected to the generator, type of tissue and the desired surgical effect.
Abstract: A closed-loop control system is disclosed for use with an electrosurgical generator that generates electrosurgical energy. The closed loop control system includes a user interface for allowing a user to select at least one pre-surgical parameter, such as the type of surgical instrument operatively connected to the generator, the type of tissue and the desired surgical effect. A sensor module is also included for continually sensing at least one of electrical and physical properties proximate a surgical site and generating at least one signal relating thereto. The system also includes a control module for continually receiving the at least one selected pre-surgical parameter from the user interface and each of the signals from the sensor module, and processing each of the signals in accordance with the at least one pre-surgical parameter using at least one of a microprocessor, computer algorithm and a mapping. The control module generates at least one corresponding control signal relating to each signal from the sensor module, and relays the control signal to the electrosurgical generator for controlling the same. A method is also disclosed for performing an electrosurgical procedure at a surgical site on a patient. The method includes the steps of: applying at least one electrical pulse to the surgical site; continually sensing electrical and physical properties proximate the surgical site; and varying pulse parameters of individual pulses of the at least one pulse in accordance with the continually-sensed properties.

1,073 citations

Patent
05 Nov 2013
TL;DR: In this article, an electrosurgical system is described, which includes an electric generator adapted to supply electrosurgery energy to tissue, as well as a microprocessor configured to determine whether a tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance.
Abstract: An electrosurgical system is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical generator includes impedance sensing circuitry which measures impedance of tissue, a microprocessor configured to determine whether a tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance, wherein tissue reaction corresponds to a boiling point of tissue fluid, and an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue.

950 citations