scispace - formally typeset
Search or ask a question
Author

Gabriel LeBlanc

Bio: Gabriel LeBlanc is an academic researcher from University of Tulsa. The author has contributed to research in topics: Photosystem I & Photocurrent. The author has an hindex of 16, co-authored 30 publications receiving 1462 citations. Previous affiliations of Gabriel LeBlanc include Lyon College & University of Texas at Austin.

Papers
More filters
Journal ArticleDOI
TL;DR: This review covers advances in electrochemical and biochemical sensor development and usage during 2010 and 2011 and focuses on novel methods and materials, with a particular focus on the increasing use of graphene sheets for sensor material development.
Abstract: This review covers advances in electrochemical and biochemical sensor development and usage during 2010 and 2011 In choosing scholarly articles to contribute to this review, special emphasis was placed on work published in the areas of reference electrodes, potentiometric sensors, voltammetric sensors, amperometric sensors, biosensors, immunosensors, and mass sensors In the past two years there have been a number of important papers, that do not fall into the general subsections contained within the larger sections Such novel advances are very important for the field of electrochemical sensors as they open up new avenues and methods for future research Each section above contains a subsection titled “Other Papers of Interest” that includes such articles and describes their importance to the field in general For example, while most electrochemical techniques for sensing analytes of interest are based on the changes in potential or current, Shan et al1 have developed a completely novel method for performing electrochemical measurements In their work, they report a method for imaging local electrochemical current using the optical signal of the electrode surface generated from a surface plasmon resonance (SPR) The electrochemical current image is based on the fact that the current density can be easily calculated from the local SPR signal The authors demonstrated this concept by imaging traces of TNT on a fingerprint on a gold substrate Full articles and reviews were primarily amassed by searching the SciFinder Scholar and ISI Web of Knowledge Additional articles were found through alternate databases or by perusing analytical journals for pertinent publications Due to the reference limitation, only publications written in English were considered for inclusion Obviously, there have been more published accounts of groundbreaking work with electrochemical and biochemical sensors than those covered here This review is a small sampling of the available literature and not intended to cover every advance of the past two years The literature chosen focuses on new trends in materials, techniques, and clinically relevant applications of novel sensors To ensure proper coverage of these trends, theoretical publications and applications of previously reported sensor development were excluded We want to remind our readers that this review is not intended to provide comprehensive coverage of electrochemical sensor development, but rather to provide a glimpse of the available depth of knowledge published in the past two years This review is meant to focus on novel methods and materials, with a particular focus on the increasing use of graphene sheets for sensor material development For readers seeking more information on the general principles behind electrochemical sensors and electrochemical methods, we recommend other sources with a broader scope2, 3 Electrochemical sensor research is continually providing new insights into a variety of fields and providing a breadth of relevant literature that is worthy of inclusion in this review Unfortunately, it is impossible to cover each publication and unintentional oversights are inevitable We sincerely apologize to the authors of electrochemical and biochemical sensor publications that were inadvertently overlooked

727 citations

Journal ArticleDOI
TL;DR: An unprecedented optical range for modulation of visible and near-infrared solar radiation with rapid switching kinetics that indicate the WO(3-x) nanocrystal framework effectively pumps charge out of the normally sluggish NbOx glass.
Abstract: Two active electrochromic materials, vacancy-doped tungsten oxide (WO(3-x)) nanocrystals and amorphous niobium oxide (NbOx) glass are arranged into a mesostructured architecture. In a strategy applicable across electrochemical applications, the critical dimensions and interfacial connections in the nanocomposite are designed to optimize pathways for electrochemical charging and discharging. The result is an unprecedented optical range for modulation of visible and near-infrared solar radiation with rapid switching kinetics that indicate the WO(3-x) nanocrystal framework effectively pumps charge out of the normally sluggish NbOx glass. The material is durable for at least 2000 electrochemical cycles.

176 citations

Journal ArticleDOI
TL;DR: Tuning the Fermi energy of silicon through doping leads to alignment of silicon bands with the redox active sites of photosystem I, which results in the highest reported photocurrent enhancement for a biohybrid electrode based on Photosystem I.
Abstract: Tuning the Fermi energy of silicon through doping leads to alignment of silicon bands with the redox active sites of photosystem I. Integrating photosystem I films with p-doped silicon results in the highest reported photocurrent enhancement for a biohybrid electrode based on photosystem I.

106 citations

Journal ArticleDOI
TL;DR: A novel microwave-assisted synthetic method has been used to synthesise a series of mixed ligand ruthenium(II) compounds containing diimine as well as bidentate thiosemicarbazone ligands, which show good cytotoxic profiles against MCF-7 and MDA-MB-231 (breast adenocarcinoma) aswell as HCT 116 and HT-29 (colorectal carcinoma) cell lines.
Abstract: A novel microwave-assisted synthetic method has been used to synthesise a series of mixed ligand ruthenium(II) compounds containing diimine as well as bidentate thiosemicarbazone ligands. The compounds contain the diimine 1,10-phenanthroline (phen) or 2,2′-bipyridine (bpy) and the thiosemicarbazone is derived from 9-anthraldehyde. Based on elemental analyses and spectroscopic data, the compounds are best formulated as [(phen)2Ru(thiosemicarbazone)](PF6)2 and [(phen)2Ru(thiosemicarbazone)](PF6)2 where thiosemicarbazone = 9-anthraldehydethiosemicarbazone, 9-anthraldehyde-N(4)-methylthiosemicarbazone, and 9-anthraldehyde-N(4)-ethylthiosemicarbazone. Fluorescence competition studies with ethidium bromide, along with viscometric measurements suggests that the complexes bind calf thymus DNA (CTDNA) relatively strongly via an intercalative mode possibly involving the aromatic rings of the diimine ligands. The complexes show good cytotoxic profiles against MCF-7 and MDA-MB-231 (breast adenocarcinoma) as well as HCT 116 and HT-29 (colorectal carcinoma) cell lines.

86 citations

Journal ArticleDOI
22 Mar 2013-Langmuir
TL;DR: The fabrication of a hybrid light-harvesting electrode consisting of photosystem I (PSI) proteins extracted from spinach and adsorbed as a monolayer onto electrically contacted, large-area graphene is reported, establishing the feasibility of conjoining these nanomaterials as potential constructs in next-generation photovoltaic devices.
Abstract: We report the fabrication of a hybrid light-harvesting electrode consisting of photosystem I (PSI) proteins extracted from spinach and adsorbed as a monolayer onto electrically contacted, large-area graphene. The transparency of graphene supports the choice of an opaque mediator at elevated concentrations. For example, we report a photocurrent of 550 nA/cm2 from a monolayer of PSI on graphene in the presence of 20 mM methylene blue, which yields an opaque blue solution. The PSI-modified graphene electrode has a total thickness of less than 10 nm and demonstrates photoactivity that is an order of magnitude larger than that for unmodified graphene, establishing the feasibility of conjoining these nanomaterials as potential constructs in next-generation photovoltaic devices.

83 citations


Cited by
More filters
Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: A comprehensive review is presented on the development and state of the art of colorimetric and fluorometric sensor arrays, which probe the chemical reactivity of analytes, rather than their physical properties.
Abstract: A comprehensive review is presented on the development and state of the art of colorimetric and fluorometric sensor arrays. Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties. This provides a high dimensionality to chemical sensing that permits high sensitivity (often down to ppb levels), impressive discrimination among very similar analytes and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, both in the gas and liquid phases.

664 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented and the various chemometric and statistical analyses of high-dimensional data are presented and critiqued in reference to their use in chemical sensing.
Abstract: A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented Chemical sensing aims to detect subtle changes in the chemical environment by transforming relevant chemical or physical properties of molecular or ionic species (ie, analytes) into an analytically useful output Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties (eg, mass) The chemical specificity of the olfactory system does not come from specific receptors for specific analytes (eg, the traditional lock-and-key model of substrate-enzyme interactions), but rather olfaction makes use of pattern recognition of the combined response of several hundred olfactory receptors In a similar fashion, arrays of chemoresponsive colorants provide high-dimensional data from the color or fluorescence changes of the dyes in these arrays as they are exposed to analytes This provides chemical sensing with high sensitivity (often down to parts per billion levels), impressive discrimination among very similar analytes, and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, in both the gas and liquid phases Design of both sensor arrays and instrumentation for their analysis are discussed In addition, the various chemometric and statistical analyses of high-dimensional data (including hierarchical cluster analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA), support vector machines (SVMs), and artificial neural networks (ANNs)) are presented and critiqued in reference to their use in chemical sensing A variety of applications are also discussed, including personal dosimetry of toxic industrial chemical, detection of explosives or accelerants, quality control of foods and beverages, biosensing intracellularly, identification of bacteria and fungi, and detection of cancer and disease biomarkers

639 citations

Journal ArticleDOI
TL;DR: The fundamental electromagnetic dynamics governing light matter interaction in plasmonic semiconductor NCs and the realization of various distinctive physical properties made possible by the advancement of colloidal synthesis routes to such NCs are discussed.
Abstract: Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals (NCs) that results in resonant absorption, scattering, and near field enhancement around the NC can be tuned across a wide optical spectral range from visible to far-infrared by synthetically varying doping level, and post synthetically via chemical oxidation and reduction, photochemical control, and electrochemical control In this review, we will discuss the fundamental electromagnetic dynamics governing light matter interaction in plasmonic semiconductor NCs and the realization of various distinctive physical properties made possible by the advancement of colloidal synthesis routes to such NCs Here, we will illustrate how free carrier dielectric properties are induced in various semiconductor materials including metal oxides, metal chalcogenides, metal nitrides, silicon, and other materials We will highlight the applicability and limitations of the Drude model as applied to semiconductors considering the complex band structures

603 citations