scispace - formally typeset
Search or ask a question
Author

Gabriel Paubert

Bio: Gabriel Paubert is an academic researcher. The author has contributed to research in topics: Comet & Atmosphere. The author has an hindex of 36, co-authored 79 publications receiving 3371 citations.


Papers
More filters
Journal Article
TL;DR: In this article, the authors present millimetre and submillimetre observations of comet C/1995 O1 (Hale-Bopp) undertaken near perihelion with the Caltech Submillimeter Observatory and the 30m telescope and Plateau-de-Bure interferometer of the Institut de Radioastronomie Millimetrique.
Abstract: We present millimetre and submillimetre observations of comet C/1995 O1 (Hale-Bopp) undertaken near perihelion with the Caltech Submillimeter Observatory and the 30-m telescope and Plateau-de-Bure interferometer of the Institut de Radioastronomie Millimetrique. From a spectral molecular survey, six new cometary molecular species have been identified for the first time in a comet: SO, SO2, HC3N, NH2CHO, HCOOH, and HCOOCH3. Relative abundances with respect to water are 0.3% (SO), 0.2% (SO2), 0.02% (HC3N), 0.01-0.02% (NH2CHO), 0.09% (HCOOH), and 0.08% (HCOOCH3). Several rotational transitions of OCS and HNCO, whose first identifications were made previously in comet C/1996 B2 (Hyakutake), have also been detected, confirming that these molecular species are ubiquitous compounds of cometary atmospheres. Inferred abundances of OCS and HNCO relative to water in comet Hale-Bopp are 0.4% and 0.1%, respectively. During this observational campaign, we also observed rotational lines of HCN, HNC, CH3CN, CO, CH3OH, H2CO, H2S, and CS. In combination with results of other observations, a comprehensive view of the volatile composition of the coma of comet Hale-Bopp is obtained. A quantitative comparison shows that chemical abundances in comet Hale-Bopp parallel those inferred in interstellar ices, hot molecular cores and bipolar flows around protostars. This suggests that the processes at work in the interstellar medium, in particular grain surface chemistry, played a major role in the formation of cometary ices. It supports models in which cometary volatiles formed in the interstellar medium and suffered little processing in the Solar Nebula.

279 citations

Journal ArticleDOI
TL;DR: In this article, the production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH 3CN,HNC) have been monitored as a function of heliocentric distance.
Abstract: C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3.

174 citations

Journal ArticleDOI
28 Mar 1997-Science
TL;DR: Spectra obtained from ground-based radio telescopes show the progressive release of CO, CH3OH, HCN, H2O (from OH), H2S, CS, H 2CO, CH 3CN, and HNC as comet Hale-Bopp approached the sun from 6.9 to 1.4 astronomical units (AU).
Abstract: Spectra obtained from ground-based radio telescopes show the progressive release of CO, CH3OH, HCN, H2O (from OH), H2S, CS, H2CO, CH3CN, and HNC as comet Hale-Bopp (C/1995 01) approached the sun from 6.9 to 1.4 astronomical units (AU). The more volatile species were relatively more abundant in the coma far from the sun, but there was no direct correlation between overabundance and volatility. Evidence for H2O sublimation from icy grains was seen beyond 3.5 AU from the sun. The change from a CO-driven coma to an H2O-driven coma occurred at about 3 AU. The gas outflow velocity and temperature increased as Hale-Bopp approached the sun.

168 citations

Journal ArticleDOI
TL;DR: A spectral survey in the 1 mm wavelength range was undertaken in the longperiod comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) using the 30 m telescope of the Institut de radioastronomie millimetrique (IRAM) in April and November−December 2013 as mentioned in this paper.
Abstract: A spectral survey in the 1 mm wavelength range was undertaken in the long-period comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) using the 30 m telescope of the Institut de radioastronomie millimetrique (IRAM) in April and November−December 2013. We report the detection of ethylene glycol (CH_2OH)_2 (aGg’ conformer) and formamide (NH_2CHO) in the two comets. The abundances relative to water of ethylene glycol and formamide are 0.2–0.3% and 0.02% in the two comets, similar to the values measured in comet C/1995 O1 (Hale-Bopp). We also report the detection of HCOOH and CH_3CHO in comet C/2013 R1 (Lovejoy), and a search for other complex species (methyl formate, glycolaldehyde).

129 citations


Cited by
More filters
Journal ArticleDOI
08 Dec 2005-Nature
TL;DR: Direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds), were reported, confirming the primary constituents were confirmed to be nitrogen and methane.
Abstract: Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.

914 citations

Journal ArticleDOI
TL;DR: Our understanding of the evolution of organic molecules and their voyage from molecular clouds to the early solar system and Earth has changed dramatically as discussed by the authors, and our understanding of molecular evolution has been changed dramatically.
Abstract: ▪ Abstract Our understanding of the evolution of organic molecules, and their voyage from molecular clouds to the early solar system and Earth, has changed dramatically. Incorporating recent observ...

877 citations

Journal ArticleDOI
TL;DR: A detailed survey of more than 100 comets has been carried out by as mentioned in this paper, which enabled taxonomic groupings based on free radical species and on crystallinity of rocky grains.
Abstract: Cometary nuclei contain the least modified material from the formative epoch of our planetary system, and their compositions reflect a range of processes experienced by material prior to its incorporation in the cometary nucleus. Dynamical models suggest that icy bodies in the main cometary reservoirs (Kuiper Belt, Oort Cloud) formed in a range of environments in the protoplanetary disk, and (for the Oort Cloud) even in disks surrounding neighboring stars of the Sun's birth cluster. Photometric and spectroscopic surveys of more than 100 comets have enabled taxonomic groupings based on free radical species and on crystallinity of rocky grains. Since 1985, new surveys have provided emerging taxonomies based on the abundance ratios of primary volatiles. More than 20 primary chemical species are now detected in bright comets. Measurements of nuclear spin ratios (in water, ammonia, and methane) and of isotopic ratios (D/H in water and HCN; 14N/15N in CN and HCN) have provided critical insights on factors affec...

849 citations

MonographDOI
01 Jul 2006
TL;DR: In this paper, the geologic diversity of asteroids and other rocky bodies of the solar system are displayed in the enormous variety of textures and mineralogies observed in meteorites, and the composition, chemistry, and mineralogy of primitive meteorites collectively provide evidence for a wide variety of chemical and physical processes.
Abstract: They range in size from microscopic particles to masses of many tons. The geologic diversity of asteroids and other rocky bodies of the solar system are displayed in the enormous variety of textures and mineralogies observed in meteorites. The composition, chemistry, and mineralogy of primitive meteorites collectively provide evidence for a wide variety of chemical and physical processes. This book synthesizes our current understanding of the early solar system, summarizing information about processes that occurred before its formation. It will be valuable as a textbook for graduate education in planetary science and as a reference for meteoriticists and researchers in allied fields worldwide.

849 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the properties of the jets of 15 active galactic nuclei obtained with the Very Long Baseline Array at 7 mm wavelength at 17 epochs from 1998 March to 2001 April.
Abstract: We present total and polarized intensity images of 15 active galactic nuclei obtained with the Very Long Baseline Array at 7 mm wavelength at 17 epochs from 1998 March to 2001 April. At some epochs the images are accompanied by nearly simultaneous polarization measurements at 3 mm, 1.35/0.85 mm, and optical wavelengths. Here we analyze the 7 mm images to define the properties of the jets of two radio galaxies, five BL Lac objects, and eight quasars on angular scales 0.1 mas. We determine the apparent velocities of 106 features in the jets. For many of the features we derive Doppler factors using a new method based on a comparison of the timescale of decline in flux density with the light-travel time across the emitting region. This allows us to estimate the Lorentz factors (Γ), intrinsic brightness temperatures, and viewing angles of 73 superluminal knots, as well as the opening angle of the jet for each source. The Lorentz factors of the jet flows in the different blazars range from Γ ~ 5 to 40 with the majority of the quasar components having Γ ~ 16–18, while the values in the BL Lac objects are more uniformly distributed. The brightest knots in the quasars have the highest apparent speeds, while the more slowly moving components are pronounced in the BL Lac objects. The quasars in our sample have similar opening angles and marginally smaller viewing angles than the BL Lacs. The two radio galaxies have lower Lorentz factors and wider viewing angles than the blazars. Opening angle and Lorentz factor are inversely proportional, as predicted by gasdynamical models. The brightness temperature drops more abruptly with distance from the core in the BL Lac objects than in the quasars and radio galaxies, perhaps owing to stronger magnetic fields in the former resulting in more severe synchrotron losses of the highest energy electrons. In nine sources we detect statistically meaningful deviations from ballistic motion, with the majority of components accelerating with distance from the core. In six sources we identify jet features with characteristics of trailing shocks that form behind the primary strong perturbations in jet simulations. The apparent speeds of these components increase with distance from the core, suggestive of acceleration of the underlying jet.

789 citations