scispace - formally typeset
Search or ask a question
Author

Gabrielle Mengus

Bio: Gabrielle Mengus is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Transcription factor II D & TAF4. The author has an hindex of 24, co-authored 36 publications receiving 1784 citations. Previous affiliations of Gabrielle Mengus include Ludwig Maximilian University of Munich & University of Pennsylvania.

Papers
More filters
Journal ArticleDOI
24 Mar 2015-eLife
TL;DR: A comprehensive MITF interactome is defined identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation and it is shown that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7.
Abstract: Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

150 citations

Journal ArticleDOI
24 Jul 1998-Cell
TL;DR: The existence of additional histone-like pairs in both the TFIID and SAGA complexes shows that the histone fold is a more commonly used motif for mediating TAF-TAF interactions than previously believed.

145 citations

Journal ArticleDOI
TL;DR: It is shown that expression of hTAF(II)135 in mammalian cells strongly and selectively potentiates transcriptional stimulation by the activation function-2 (AF-2) of the retinoic acid, thyroid hormone, and vitamin D3 receptors, but does not affect the AF-2s of the estrogen (ER) or retinoid X (RXR) receptors.
Abstract: We report for the first time the cloning of a complete cDNA encoding the human TFIID subunit hTAF(II)135 (hTAF(II)130). Full-length hTAF(II)135 comprises 1083 amino acids and contains two conserved domains present also in dTAF(II)110 and hTAF(II)105. We show that expression of hTAF(II)135 in mammalian cells strongly and selectively potentiates transcriptional stimulation by the activation function-2 (AF-2) of the retinoic acid, thyroid hormone, and vitamin D3 receptors (RAR, TR, and VDR), but does not affect the AF-2s of the estrogen (ER) or retinoid X (RXR) receptors. The coactivator activity requires an hTAF(II)135 region that is located between the conserved domains but is itself not conserved in dTAF(II)110 and hTAF(II)105. Expression of hTAF(II)135 also stimulates RAR AF-2 activity when a promoter with a low-affinity TATA element (TGTA) is used, indicating that hTAF(II)135 overexpression compensates for the low-affinity of TBP for this promoter and may facilitate the recruitment of TFIID by the RAR AF-2.

136 citations

Journal ArticleDOI
TL;DR: It is found that contact of the MOF chromo‐related domain with roX RNA plays only a minor role in correct targeting to the X chromosome in vivo, and a strong, direct interaction between a conserved MSL1 domain and a zinc finger within MOF's HAT domain is crucial.
Abstract: Dosage compensation in flies involves doubling the transcription of genes on the single male X chromosome to match the combined expression level of the two female X chromosomes. Crucial for this activation is the acetylation of histone H4 by the histone acetyltransferase (HAT) MOF. In male cells, MOF resides in a complex (dosage compensation complex, DCC) with MSL proteins and noncoding roX RNA. Previous studies suggested that MOF's localization to the X chromosome was largely RNA-mediated. We now found that contact of the MOF chromo-related domain with roX RNA plays only a minor role in correct targeting to the X chromosome in vivo. Instead, a strong, direct interaction between a conserved MSL1 domain and a zinc finger within MOF's HAT domain is crucial. The functional consequences of this interaction were studied in vitro. Simultaneous contact of MOF with MSL1 and MSL3 led to its recruitment to chromatin, a dramatic stimulation of HAT activity and to improved substrate specificity. Activation of MOF's HAT activity upon integration into the DCC may serve to restrict the critical histone modification to the male X chromosome.

124 citations

Journal ArticleDOI
TL;DR: Results show for the first time how the composition of a general transcription factor such as TFIID and other TAF-containing complexes are modulated during a differentiation programme highlighting the unique nature of the transcription regulatory machinery in spermatogenesis.
Abstract: Transcription regulation in male germ cells can involve specialised mechanisms and testis-specific paralogues of the general transcription machinery. Here we describe TAF7L, a germ-cell-specific paralogue of the TFIID subunit TAF7. TAF7L is expressed through most of the male germ-cell differentiation programme, but its intracellular localisation is dynamically regulated from cytoplasmic in spermatogonia and early spermatocytes to nuclear in late pachytene spermatocytes and haploid round spermatids. Import of TAF7L into the nucleus coincides with decreased TAF7 expression and a strong increase in nuclear TBP expression, which suggests that TAF7L replaces TAF7 as a TFIID subunit in late pachytene spermatocytes and in haploid cells. In agreement with this, biochemical experiments indicate that a subpopulation of TAF7L is tightly associated with TBP in both pachytene and haploid cells and TAF7L interacts with the TFIID subunit TAF1. We further show that TAF3, TAF4 and TAF10 are all strongly expressed in early spermatocytes, but that in contrast to TBP and TAF7L, they are downregulated in haploid cells. Hence, different subunits of the TFIID complex are regulated in distinct ways during male germ-cell differentiation. These results show for the first time how the composition of a general transcription factor such as TFIID and other TAF-containing complexes are modulated during a differentiation programme highlighting the unique nature of the transcription regulatory machinery in spermatogenesis.

119 citations


Cited by
More filters
Journal ArticleDOI
07 Nov 2013-Cell
TL;DR: The super-enhancers are large clusters of transcriptional enhancers that drive expression of genes that define cell identity and play key roles in human cell identity in health and in disease as mentioned in this paper.

2,832 citations

Journal ArticleDOI
08 Jan 1998-Nature
TL;DR: An atomic model of the αβ tubulin dimer fitted to a 3.7-Å density map obtained by electron crystallography of zinc-induced tubulin sheets is presented.
Abstract: The αβ tubulin heterodimer is the structural subunit of microtubules, which are cytoskeletal elements that are essential for intracellular transport and cell division in all eukaryotes. Each tubulin monomer binds a guanine nucleotide, which is non-exchangeable when it is bound in the α subunit, or N site, and exchangeable when bound in the β subunit, or E site. The α- and β-tubulins share 40% amino-acid sequence identity, both exist in several isotype forms, and both undergo a variety of post-translational modifications1. Limited sequence homology has been found with the proteins FtsZ2 and Misato3, which are involved in cell division in bacteria and Drosophila, respectively. Here we present an atomic model of the αβ tubulin dimer fitted to a 3.7-A density map obtained by electron crystallography of zinc-induced tubulin sheets. The structures of α- and β-tubulin are basically identical: each monomer is formed by a core of two β-sheets surrounded by α-helices. The monomer structure is very compact, but can be divided into three functional domains: the amino-terminal domain containing the nucleotide-binding region, an intermediate domain containing the Taxol-binding site, and the carboxy-terminal domain, which probably constitutes the binding surface for motor proteins.

1,953 citations

Journal ArticleDOI
TL;DR: This review will summarize selected aspects of the current knowledge of the cellular and molecular biology of nuclear receptor coregulators.
Abstract: Nuclear receptor coregulators are coactivators or corepressors that are required by nuclear receptors for efficient transcripitonal regulation. In this context, we define coactivators, broadly, as molecules that interact with nuclear receptors and enhance their transactivation. Analogously, we refer to nuclear receptor corepressors as factors that interact with nuclear receptors and lower the transcription rate at their target genes. Most coregulators are, by definition, rate limiting for nuclear receptor activation and repression, but do not significantly alter basal transcription. Recent data have indicated multiple modes of action of coregulators, including direct interactions with basal transcription factors and covalent modification of histones and other proteins. Reflecting this functional diversity, many coregulators exist in distinct steady state precomplexes, which are thought to associate in promoter-specific configurations. In addition, these factors may function as molecular gates to enable integration of diverse signal transduction pathways at nuclear receptor-regulated promoters. This review will summarize selected aspects of our current knowledge of the cellular and molecular biology of nuclear receptor coregulators.

1,922 citations

Journal ArticleDOI
27 Mar 2014-Cell
TL;DR: The pathway of ncRNA research is described, where every established "rule" seems destined to be overturned.

1,875 citations

Journal ArticleDOI
TL;DR: This work detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.
Abstract: The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.

1,789 citations