scispace - formally typeset
Search or ask a question
Author

Gade Pandu Rangaiah

Bio: Gade Pandu Rangaiah is an academic researcher from National University of Singapore. The author has contributed to research in topics: Multi-objective optimization & Global optimization. The author has an hindex of 42, co-authored 277 publications receiving 5737 citations. Previous affiliations of Gade Pandu Rangaiah include Indian Institute of Technology Kanpur & Nanyang Technological University.


Papers
More filters
BookDOI
01 Feb 2017
TL;DR: This paper presents a meta-anatomical architecture for multi-Objective Optimization of multi-Product Microbial Cell Factory for Multiple Objectives and some of the principles used in this architecture were previously described in the book “Optimal Design of Chemical Processes for Multiple Economic and Environmental Objectives.”
Abstract: Introduction (G P Rangaiah) Multi-Objective Optimization Applications in Chemical Engineering (Masuduzzaman & G P Rangaiah) Techniques: Multi-Objective Evolutionary Algorithms: A Review of the State of the Art and Some of Their Applications in Chemical Engineering (A L Jaimes & C A Coello Coello) The Jumping Gene Adaptations of Multi-Objective Genetic Algorithm and Simulated Annealing (M Ramteke & S K Gupta) Multi-Objective Optimization Using Surrogate-Assisted Evolutionary Algorithm (T Ray) Why Use Interactive Multi-Objective Optimization in Chemical Process Design? (K Miettinen & J Hakanen) Net Flow and Rough Set: Two Methods for Ranking the Pareto Domain (J Thibault) Applications: Multi-Objective Optimization of Gas-Phase Refrigeration Systems for LNG (N Shah et al.) A Multi-Objective Evolutionary Algorithm for Practical Residue Catalytic Cracking Feed Optimization (K C Tan et al.) Optimal Design of Chemical Processes for Multiple Economic and Environmental Objectives (E S Q Lee et al.) Multi-Objective Emergency Response Optimization around Chemical Plants (P S Georgiadou et al.) Array Informatics Using Multi-Objective Genetic Algorithms: From Gene Expressions to Gene Networks (S Garg) Multi-Objective Optimization of a Multi-Product Microbial Cell Factory for Multiple Objectives - A Paradigm for Metabolic Pathway Recipe (F C Lee et al.).

184 citations

Journal ArticleDOI
TL;DR: 10 methods for selecting an optimal solution from the Pareto-optimal front are carefully chosen and implemented in an MS Excel-based program and applied to the selection of a optimal solution in many benchmark or mathematical problems and chemical engineering applications.
Abstract: Process optimization often has two or more objectives which are conflicting. For such situations, multiobjective optimization (MOO) provides many optimal solutions, which are equally good from the perspective of the given objectives. These solutions, known as Pareto-optimal front and as nondominated solutions, provide deeper insights into the trade-off among the objectives and many choices for implementation. In the past 20 years, researchers have applied MOO to numerous applications in chemical engineering. However, selection of an optimal solution from the set of nondominated solutions has not received much attention in the chemical engineering literature. In the present study, 10 methods for selecting an optimal solution from the Pareto-optimal front are carefully chosen and implemented in an MS Excel-based program. Then, they are applied to the selection of an optimal solution in many benchmark or mathematical problems and chemical engineering applications, and their effectiveness and similarities are...

168 citations

Journal ArticleDOI
TL;DR: In this article, the effects of lamp choice, concentration of catalyst, and methylene blue were analyzed, and experimental data was fitted to a pseudo-first-order model with sufficient accuracy.
Abstract: The application of semiconductors in water treatment via photocatalysis of various pollutants has attracted much attention from researchers. In this work, photocatalytic degradation of methylene blue by P25 titanium dioxide was studied experimentally and then via modeling. The effects of lamp choice, concentration of catalyst, and methylene blue were analyzed. Desorption of methylene blue at the start of light radiation was observed, and analyzed in detail for the first time. Both desorption and degradation processes were modeled, and experimental data was fitted to a pseudo-first-order model with sufficient accuracy. The effects of catalyst and initial dye concentration on reaction rate constants were discussed.

158 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the potential of retrofitting conventional 2-column (C2C) systems in operation for separating ternary mixtures into three products, to divide-wall column (DWC), which works on the basis of Fully Thermally Coupled Distillation System (FTCDS).
Abstract: Distillation, the most common separation process in chemical process industries, requires significant energy inputs. Dividing-Wall Column (DWC), which works on the basis of Fully Thermally Coupled Distillation System (FTCDS), is chosen for this study due to its lower energy consumption compared to the conventional column system. The main objective of this study is to investigate the potential of retrofitting conventional 2-column (C2C) systems in operation for separating ternary mixtures into three products, to DWCs. For this, six applications of industrial importance are selected and conventional 2-column systems are designed, which are assumed to be currently in operation in the plants. Then, retrofitting these systems to DWC is studied. Results show that retrofitting the existing 2-column systems to DWCs is very attractive both economically and for its reduced energy requirements.

135 citations

Journal ArticleDOI
TL;DR: In this paper, an existing side-fired steam reformer is simulated using a rigorous model with proven reaction kinetics, incorporating aspects of heat transfer in the furnace and diffusion in the catalyst pellet.
Abstract: An existing side-fired steam reformer is simulated using a rigorous model with proven reaction kinetics, incorporating aspects of heat transfer in the furnace and diffusion in the catalyst pellet. Thereafter, “optimal” conditions, which could lead to an improvement in its performance, are obtained. An adaptation of the nondominated sorting genetic algorithm is employed to perform a multiobjective optimization. For a fixed production rate of hydrogen from the unit, the simultaneous minimization of the methane feed rate and the maximization of the flow rate of carbon monoxide in the syngas are chosen as the two objective functions, keeping in mind the processing requirements, heat integration, and economics. For the design configuration considered in this study, sets of Pareto-optimal operating conditions are obtained. The results are expected to enable the engineer to gain useful insights into the process and guide him/her in operating the reformer to minimize processing costs and to maximize profits.

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far are presented.
Abstract: Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms in current use. DE operates through similar computational steps as employed by a standard evolutionary algorithm (EA). However, unlike traditional EAs, the DE-variants perturb the current-generation population members with the scaled differences of randomly selected and distinct population members. Therefore, no separate probability distribution has to be used for generating the offspring. Since its inception in 1995, DE has drawn the attention of many researchers all over the world resulting in a lot of variants of the basic algorithm with improved performance. This paper presents a detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far. Also, it provides an overview of the significant engineering applications that have benefited from the powerful nature of DE.

4,321 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the knowledge of the production and properties of charcoal that has been accumulated over the past 38 millenia and summarize the potential of charcoal as a renewable fuel.
Abstract: In this review, we summarize the knowledge of the production and properties of charcoal that has been accumulated over the past 38 millenia. The manipulation of pressure, moisture content, and gas flow enables biomass carbonization with fixed-carbon yields that approachor attainthe theoretical limit after reaction times of a few tens of minutes. Much of the heat needed to carbonize the feed is released by vigorous, exothermic secondary reactions that reduce the formation of unwanted tars by augmenting the charcoal yield in a well-designed carbonizer. As a renewable fuel, charcoal has many attractive features: it contains virtually no sulfur or mercury and is low in nitrogen and ash; it is highly reactive yet easy to store and handle. Carbonized charcoal can be a good adsorbent with a large surface area and a semimetal with an electrical resistivity comparable to that of graphite. Recent advances in knowledge about the production and properties of charcoal presage its expanded use as a renewable fuel, red...

1,402 citations

Journal ArticleDOI
TL;DR: It is found that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research on DE.
Abstract: Differential Evolution (DE) is arguably one of the most powerful and versatile evolutionary optimizers for the continuous parameter spaces in recent times. Almost 5 years have passed since the first comprehensive survey article was published on DE by Das and Suganthan in 2011. Several developments have been reported on various aspects of the algorithm in these 5 years and the research on and with DE have now reached an impressive state. Considering the huge progress of research with DE and its applications in diverse domains of science and technology, we find that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research. The purpose of this paper is to summarize and organize the information on these current developments on DE. Beginning with a comprehensive foundation of the basic DE family of algorithms, we proceed through the recent proposals on parameter adaptation of DE, DE-based single-objective global optimizers, DE adopted for various optimization scenarios including constrained, large-scale, multi-objective, multi-modal and dynamic optimization, hybridization of DE with other optimizers, and also the multi-faceted literature on applications of DE. The paper also presents a dozen of interesting open problems and future research issues on DE.

1,265 citations

Journal ArticleDOI
TL;DR: Adapt nonlinear model predictive control is promising for the control of glucose concentration during fasting conditions in subjects with type 1 diabetes.
Abstract: A nonlinear model predictive controller has been developed to maintain normoglycemia in subjects with type 1 diabetes during fasting conditions such as during overnight fast. The controller employs a compartment model, which represents the glucoregulatory system and includes submodels representing absorption of subcutaneously administered short-acting insulin Lispro and gut absorption. The controller uses Bayesian parameter estimation to determine time-varying model parameters. Moving target trajectory facilitates slow, controlled normalization of elevated glucose levels and faster normalization of low glucose values. The predictive capabilities of the model have been evaluated using data from 15 clinical experiments in subjects with type 1 diabetes. The experiments employed intravenous glucose sampling (every 15 min) and subcutaneous infusion of insulin Lispro by insulin pump (modified also every 15 min). The model gave glucose predictions with a mean square error proportionally related to the prediction horizon with the value of 0.2 mmol L(-1) per 15 min. The assessment of clinical utility of model-based glucose predictions using Clarke error grid analysis gave 95% of values in zone A and the remaining 5% of values in zone B for glucose predictions up to 60 min (n = 1674). In conclusion, adaptive nonlinear model predictive control is promising for the control of glucose concentration during fasting conditions in subjects with type 1 diabetes.

1,164 citations