scispace - formally typeset
Search or ask a question
Author

Gaël Ménasché

Bio: Gaël Ménasché is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Cytotoxic T cell & Perforin. The author has an hindex of 24, co-authored 32 publications receiving 3516 citations. Previous affiliations of Gaël Ménasché include Paris Descartes University & University of Pennsylvania.

Papers
More filters
Journal ArticleDOI
TL;DR: The GTP-binding protein RAB27A appears to be involved in the control of the immune system, as all patients with RAB 27A mutations, but none with the MYO5A mutation, developed HS.
Abstract: Griscelli syndrome (GS, MIM 214450), a rare, autosomal recessive disorder, results in pigmentary dilution of the skin and the hair, the presence of large clumps of pigment in hair shafts and an accumulation of melanosomes in melanocytes. Most patients also develop an uncontrolled T-lymphocyte and macrophage activation syndrome (known as haemophagocytic syndrome, HS), leading to death in the absence of bone-marrow transplantation. In contrast, early in life some GS patients show a severe neurological impairment without apparent immune abnormalities. We previously mapped the GS locus to chromosome 15q21 and found a mutation in a gene (MYO5A) encoding a molecular motor in two patients. Further linkage analysis suggested a second gene associated with GS was in the same chromosomal region. Homozygosity mapping in additional families narrowed the candidate region to a 3.1-cM interval between D15S1003 and D15S962. We detected mutations in RAB27A, which lies within this interval, in 16 patients with GS. Unlike MYO5A, the GTP-binding protein RAB27A appears to be involved in the control of the immune system, as all patients with RAB27A mutations, but none with the MYO5A mutation, developed HS. In addition, RAB27A-deficient T cells exhibited reduced cytotoxicity and cytolytic granule exocytosis, whereas MYO5A-defective T cells did not. RAB27A appears to be a key effector of cytotoxic granule exocytosis, a pathway essential for immune homeostasis.

889 citations

Journal ArticleDOI
TL;DR: It is explored the possibility that comparison of these two kinetically and spatially regulated secretory pathways will provide clues to uncover additional effectors that regulate the cytotoxic function of lymphocytes.
Abstract: Cytotoxic T cells and natural killer cells are crucial for immune surveillance against virus-infected cells and tumour cells. Molecular studies of individuals with inherited defects that impair lymphocyte cytotoxic function have also highlighted the importance of cytotoxicity in the regulation and termination of immune responses. As discussed in this Review, characterization of these defects has contributed to our understanding of the key steps that are required for the maturation of cytotoxic granules and the secretion of their contents at the immunological synapse during target cell killing. This has revealed a marked similarity between cytotoxic granule exocytosis at the immunological synapse and synaptic vesicle exocytosis at the neurological synapse. We explore the possibility that comparison of these two kinetically and spatially regulated secretory pathways will provide clues to uncover additional effectors that regulate the cytotoxic function of lymphocytes.

365 citations

Journal ArticleDOI
TL;DR: Data indicate that STXBP2 is required at a late step of the secretory pathway for the release of cytotoxic granules by binding syntaxin 11, another component of the intracellular membrane fusion machinery.
Abstract: Familial hemophagocytic lymphohistiocytosis (FHL) is a genetically heterogeneous autosomal recessive immune disorder characterized by the occurrence of uncontrolled activation of lymphocytes and macrophages infiltrating multiple organs. Disease-causing mutations in the perforin (PRF1; also known as FHL2), Munc13-4 (UNC13D; also known as FHL3), and syntaxin-11 (STX11; also known as FHL4) genes have been identified in individuals with FHL. These genes all encode proteins involved in the cytotoxic activity of lymphocytes. Here, we show that the gene encoding syntaxin-binding protein 2 (Munc18-2; official gene symbol STXBP2) is mutated in another subset of patients with FHL (designated by us as “FHL5”). Lymphoblasts isolated from these patients had strongly decreased STXBP2 protein expression, and NK cells exhibited impaired cytotoxic granule exocytosis, a defect that could be overcome by ectopic expression of wild-type STXBP2. Furthermore, we provide evidence that syntaxin-11 is the main partner of STXBP2 in lymphocytes, as its expression required the presence of STXBP2. Our work shows that STXBP2 deficiency causes FHL5. These data indicate that STXBP2 is required at a late step of the secretory pathway for the release of cytotoxic granules by binding syntaxin 11, another component of the intracellular membrane fusion machinery.

327 citations

Journal ArticleDOI
TL;DR: Griscelli syndrome (GS) is a rare autosomal recessive disorder that associates hypopigmentation, characterized by a silver-gray sheen of the hair and the presence of large clusters of pigment in the hair shaft, and the occurrence of either a primary neurological impairment or a severe immune disorder.
Abstract: Griscelli syndrome (GS) is a rare autosomal recessive disorder that associates hypopigmentation, characterized by a silver-gray sheen of the hair and the presence of large clusters of pigment in the hair shaft, and the occurrence of either a primary neurological impairment or a severe immune disorder. Two different genetic forms, GS1 and GS2, respectively, account for the mutually exclusive neurological and immunological phenotypes. Mutations in the gene encoding the molecular motor protein Myosin Va (MyoVa) cause GS1 and the dilute mutant in mice, whereas mutations in the gene encoding the small GTPase Rab27a are responsible for GS2 and the ashen mouse model. We herein present genetic and functional evidence that a third form of GS (GS3), whose expression is restricted to the characteristic hypopigmentation of GS, results from mutation in the gene that encodes melanophilin (Mlph), the ortholog of the gene mutated in leaden mice. We also show that an identical phenotype can result from the deletion of the MYO5A F-exon, an exon with a tissue-restricted expression pattern. This spectrum of GS conditions pinpoints the distinct molecular pathways used by melanocytes, neurons, and immune cells in secretory granule exocytosis, which in part remain to be unraveled.

291 citations

Journal ArticleDOI
TL;DR: It is shown that the cytotoxic function of lymphocytes requires the cooperation of two types of organelles: the lysosomal cytot toxic granule and the endosomal 'exocytic vesicle'.
Abstract: Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4

254 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: HLH‐2004 chemo‐immunotherapy includes etoposide, dexamethasone, cyclosporine A upfront and, in selected patients, intrathecal therapy with methotrexate and corticosteroids, and subsequent hematopoietic stem cell transplantation is recommended for patients with familial disease or molecular diagnosis, and patients with severe and persistent, or reactivated, disease.
Abstract: In HLH-94, the first prospective international treatment study for hemophagocytic lymphohistiocytosis (HLH), diagnosis was based on five criteria (fever, splenomegaly, bicytopenia, hypertriglyceridemia and/or hypofibrinogenemia, and hemophagocytosis). In HLH-2004 three additional criteria are introduced; low/absent NK-cell-activity, hyperferritinemia, and high-soluble interleukin-2-receptor levels. Altogether five of these eight criteria must be fulfilled, unless family history or molecular diagnosis is consistent with HLH. HLH-2004 chemo-immunotherapy includes etoposide, dexamethasone, cyclosporine A upfront and, in selected patients, intrathecal therapy with methotrexate and corticosteroids. Subsequent hematopoietic stem cell transplantation (HSCT) is recommended for patients with familial disease or molecular diagnosis, and patients with severe and persistent, or reactivated, disease. In order to hopefully further improve diagnosis, therapy and biological understanding, participation in HLH studies is encouraged.

3,848 citations

Journal ArticleDOI
TL;DR: Cellular organelles in the exocytic and endocytic pathways have a distinctive spatial distribution and communicate through an elaborate system of vesiculo-tubular transport.
Abstract: Cellular organelles in the exocytic and endocytic pathways have a distinctive spatial distribution and communicate through an elaborate system of vesiculo-tubular transport. Rab proteins and their effectors coordinate consecutive stages of transport, such as vesicle formation, vesicle and organelle motility, and tethering of vesicles to their target compartment. These molecules are highly compartmentalized in organelle membranes, making them excellent candidates for determining transport specificity and organelle identity.

3,373 citations

Journal ArticleDOI
TL;DR: Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic.
Abstract: Rab GTPases control intracellular vesicle traffic by acting as regulatable switches that recruit effector molecules when in their GTP-bound form. The functional coupling between multiple Rab GTPases ensures the spatiotemporally coordinated regulation of vesicle traffic. Membrane trafficking between organelles by vesiculotubular carriers is fundamental to the existence of eukaryotic cells. Central in ensuring that cargoes are delivered to their correct destinations are the Rab GTPases, a large family of small GTPases that control membrane identity and vesicle budding, uncoating, motility and fusion through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases and motors. Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic. Functional impairments of Rab pathways are associated with diseases, such as immunodeficiencies, cancer and neurological disorders.

2,893 citations

Journal ArticleDOI
TL;DR: The current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication are discussed.
Abstract: The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication.

2,056 citations

Journal ArticleDOI
TL;DR: The results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo.
Abstract: Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo.

2,006 citations