scispace - formally typeset
Search or ask a question
Author

Gaëtan Gruel

Bio: Gaëtan Gruel is an academic researcher from Institut de radioprotection et de sûreté nucléaire. The author has contributed to research in topics: Medicine & Dosimetry. The author has an hindex of 15, co-authored 33 publications receiving 723 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure, and individual characteristics of these techniques, their limitations and potential for further development are discussed, and their usefulness in specific exposure scenarios is discussed.
Abstract: The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements.

233 citations

Journal ArticleDOI
TL;DR: The automatic scoring method is more accurate than the manual scoring on 50 metaphases and can therefore be used for triage, and in place of the Manual scoring on 500 metaphases method for individual dose estimation, because it is as accurate and much faster.
Abstract: Vaurijoux, A., Gruel, G., Pouzoulet, F., Gregoire, E., Martin, C., Roch-Lefevre, S., Voisin, P., Voisin, P. and Roy, L. Strategy for Population Triage Based on Dicentric Analysis. Radiat. Res. 171, 541–548 (2009). After large-scale accidental overexposure to ionizing radiation, a rapid triage of the exposed population can be performed by scoring dicentrics and ring chromosomes among 50 metaphases. This is rapid but is not accurate because the sensitivity is around 0.5 Gy. After the triage step, dose can be estimated by scoring 500 metaphases. This is lengthy but very accurate because the sensitivity is between 0.1 and 0.2 Gy. To improve the methodology, we propose the use of software for automatic dicentric scoring that was tested on victims of an accident in Dakar. Manual scoring of 50 metaphases was carried out, then manual scoring of 500 metaphases, and automatic scoring. Comparison between the dose classifications obtained with manual scoring on 50 metaphases and 500 metaphases showed 50% mis...

84 citations

Journal ArticleDOI
TL;DR: A multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track structure to relative biological effectiveness in proton and ion beam therapy and the European metrology project, Biologically Weighted Quantities in Radiotherapy, is introduced.
Abstract: Proton and ion beams are radiotherapy modalities of increasing importance and interest. Because of the different biological dose response of these radiations as compared with high-energy photon beams, the current approach of treatment prescription is based on the product of the absorbed dose to water and a biological weighting factor, but this is found to be insufficient for providing a generic method to quantify the biological outcome of radiation. It is therefore suggested to define new dosimetric quantities that allow a transparent separation of the physical processes from the biological ones. Given the complexity of the initiation and occurrence of biological processes on various time and length scales, and given that neither microdosimetry nor nanodosimetry on their own can fully describe the biological effects as a function of the distribution of energy deposition or ionization, a multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track struct...

65 citations

Journal ArticleDOI
TL;DR: Interestingly, the number of modulated genes does not seem to change drastically with dose, even at the lowest dose of 5mGy, and in silico promoter analysis seems to confirm the implication of transcription factors related to the pathways mentioned above.

46 citations

Journal ArticleDOI
TL;DR: This study demonstrates that automatic detection of dicentrics is a credible alternative for recent and acute cases of whole- and partial-body accidental exposures to ionizing radiation.
Abstract: In accidental exposure to ionizing radiation, it is essential to estimate the dose received by the victims. Currently dicentric scoring is the best biological indicator of exposure. The standard biological dosimetry procedure (500 metaphases scored manually) is suitable for a few dose estimations, but the time needed for analysis can be problematic in the case of a large-scale accident. Recently, a new methodology using automatic detection of dicentrics has greatly decreased the time needed for dose estimation and preserves the accuracy of the estimation. However, the capability to detect nonhomogeneous partial-body exposures is an important advantage of dicentric scoring-based biodosimetry, and this remains to be tested with automatic scoring. Thus we analyzed the results obtained with in vitro blood dilutions and in real cases of accidental exposure (partial- or whole-body exposure) using manual scoring and automatic detection of dicentrics. We confirmed that automatic detection allows threefold quicker dicentric scoring than the manual procedure with similar dose estimations and uncertainty intervals. The results concerning partial-body exposures were particularly promising, and homogeneously exposed samples were correctly distinguished from heterogeneously exposed samples containing 5% to 75% of blood irradiated with 2 Gy. In addition, the results obtained for real accident cases were similar whatever the methodology used. This study demonstrates that automatic detection of dicentrics is a credible alternative for recent and acute cases of whole- and partial-body accidental exposures to ionizing radiation.

41 citations


Cited by
More filters
Journal ArticleDOI
John Allison1, K. Amako2, John Apostolakis3, Pedro Arce4, Makoto Asai5, Tsukasa Aso6, Enrico Bagli, Alexander Bagulya7, Sw. Banerjee8, G. Barrand9, B. R. Beck10, Alexey Bogdanov11, D. Brandt, Jeremy M. C. Brown12, Helmut Burkhardt3, Ph Canal8, D. Cano-Ott4, Stephane Chauvie, Kyung-Suk Cho13, G.A.P. Cirrone14, Gene Cooperman15, M. A. Cortés-Giraldo16, G. Cosmo3, Giacomo Cuttone14, G.O. Depaola17, Laurent Desorgher, X. Dong15, Andrea Dotti5, Victor Daniel Elvira8, Gunter Folger3, Ziad Francis18, A. Galoyan19, L. Garnier9, M. Gayer3, K. Genser8, Vladimir Grichine3, Vladimir Grichine7, Susanna Guatelli20, Susanna Guatelli21, Paul Gueye22, P. Gumplinger23, Alexander Howard24, Ivana Hřivnáčová9, S. Hwang13, Sebastien Incerti25, Sebastien Incerti26, A. Ivanchenko3, Vladimir Ivanchenko3, F.W. Jones23, S. Y. Jun8, Pekka Kaitaniemi27, Nicolas A. Karakatsanis28, Nicolas A. Karakatsanis29, M. Karamitrosi30, M.H. Kelsey5, Akinori Kimura31, Tatsumi Koi5, Hisaya Kurashige32, A. Lechner3, S. B. Lee33, Francesco Longo34, M. Maire, Davide Mancusi, A. Mantero, E. Mendoza4, B. Morgan35, K. Murakami2, T. Nikitina3, Luciano Pandola14, P. Paprocki3, J Perl5, Ivan Petrović36, Maria Grazia Pia, W. Pokorski3, J. M. Quesada16, M. Raine, Maria A.M. Reis37, Alberto Ribon3, A. Ristic Fira36, Francesco Romano14, Giorgio Ivan Russo14, Giovanni Santin38, Takashi Sasaki2, D. Sawkey39, J. I. Shin33, Igor Strakovsky40, A. Taborda37, Satoshi Tanaka41, B. Tome, Toshiyuki Toshito, H.N. Tran42, Pete Truscott, L. Urbán, V. V. Uzhinsky19, Jerome Verbeke10, M. Verderi43, B. Wendt44, H. Wenzel8, D. H. Wright5, Douglas Wright10, T. Yamashita, J. Yarba8, H. Yoshida45 
TL;DR: Geant4 as discussed by the authors is a software toolkit for the simulation of the passage of particles through matter, which is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection.
Abstract: Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. The adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions to the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.

2,260 citations

Reference EntryDOI
15 Oct 2004

2,118 citations

Journal ArticleDOI
TL;DR: This first FLash-RT treatment was feasible and safe with a favorable outcome both on normal skin and the tumor, and prompt to further clinical evaluation of FLASH-RT.

340 citations

Journal ArticleDOI
TL;DR: In this article, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure, and individual characteristics of these techniques, their limitations and potential for further development are discussed, and their usefulness in specific exposure scenarios is discussed.
Abstract: The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements.

233 citations

Journal ArticleDOI
TL;DR: This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies and proposes a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure.
Abstract: Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100 mSv and/or 0.1 mSv min−1) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential.

182 citations