scispace - formally typeset
Search or ask a question
Author

Gaetano Giudice

Bio: Gaetano Giudice is an academic researcher from National Institute of Geophysics and Volcanology. The author has contributed to research in topics: Volcano & Magma. The author has an hindex of 30, co-authored 87 publications receiving 2817 citations.
Topics: Volcano, Magma, Volcanic Gases, Plume, Lava


Papers
More filters
Journal ArticleDOI
01 Dec 2007-Geology
TL;DR: In this article, the results of two years of real-time observation of H2O, CO2, and SO2 in volcanic gases from Mount Etna volcano were unambiguously demonstrated that increasing CO2/SO2 ratios can allow detection of pre-eruptive degassing of rising magmas.
Abstract: It is generally accepted, but not experimentally proven, that a quantitative prediction of volcanic eruptions is possible from the evaluation of volcanic gas data. By discussing the results of two years of real-time observation of H2O, CO2, and SO2 in volcanic gases from Mount Etna volcano, we unambiguously demonstrate that increasing CO2/SO2 ratios can allow detection of the pre-eruptive degassing of rising magmas. Quantitative modeling by the use of a saturation model allows us to relate the pre-eruptive increases of the CO2/SO2 ratio to the refilling of Etna's shallow conduits with CO2-rich deep-reservoir magmas, leading to pressurization and triggering of eruption. The advent of real-time observations of H2O, CO2, and SO2, combined with well-constrained models of degassing, represents a step forward in eruption forecasting.

287 citations

Journal ArticleDOI
TL;DR: In this paper, a portable gas analyzer, capable of real-time measurement of CO2, SO2 and H2S concentrations in volcanic gases, was tested at La Fossa Crater, Vulcano Island.
Abstract: [1] The performance of a newly-developed portable gas analyzer, capable of real-time measurement of CO2, SO2 and H2S concentrations in volcanic gases, was tested at La Fossa Crater, Vulcano Island. The gas analyzer was used to acquire about 3000 determinations over the fumarolic field, allowing the definition of its chemical structure and heterogeneity. Our high-resolution analysis reveals that, in December 2004, the La Fossa fumarolic field was characterized by an oxidized inner core (SO2/H2S ratios of ∼3), and by more reducing conditions on its northern edge (SO2/H2S ratios of ∼1; range: 0.2–3.3). CO2/(SO2+H2S) molar ratios averaged 35 ± 21, with overlapping compositions for rim and inner crater fumaroles. S-poor compositions (CO2/(SO2+H2S) ≥ 50) characterized the field margins, probably due to deposition of native sulfur. Based on the above data and an SO2 flux of 18 ± 3 t·d−1, we estimate CO2 and H2S output rates from the volcano of 420 ± 250 and 4 ± 2 t·d−1, respectively.

159 citations

Journal ArticleDOI
TL;DR: In this article, the first measurements of volcanic gases with an unmanned aerial vehicle (UAV) were reported, and the data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO 2 flux (8.5 Mg d-1 ), and an infrared spectrometers, and electrochemical sensor assembly for measuring the plume CO 2 /SO 2 ratio; by multiplying these data, the authors computed a CO 2 flux of 170 Mg
Abstract: [i] We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO 2 flux (8.5 Mg d- 1 ), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO 2 /SO 2 ratio; by multiplying these data we compute a CO 2 flux of 170 Mg d -1 . Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydro-thermal systems, relative to SO 2 , the ability to remotely measure CO 2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO 2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data.

155 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the results of two years of in-situ sensing of the CO 2 /SO 2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption.

155 citations

Journal ArticleDOI
TL;DR: In this article, the first measurements of bromine and iodine emissions from Mount Etna were made using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr−1 and 0.01 kt dc−1 for Br and I, respectively, from April to October 2004, from which they estimate global Br and iodine fluxes of order 13 (range, 3-40) and 1.11 (range 0.04-6.6) kt rc−1.
Abstract: [1] Constraining fluxes of volcanic bromine and iodine to the atmosphere is important given the significant role these species play in ozone depletion. However, very few such measurements have been made hitherto, such that global volcanic fluxes are poorly constrained. Here we extend the data set of volcanic Br and I degassing by reporting the first measurements of bromine and iodine emissions from Mount Etna. These data were obtained using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr−1 and 0.01 kt yr−1 for Br and I, respectively, from April to October 2004, from which we estimate global Br and I fluxes of order 13 (range, 3–40) and 0.11 (range, 0.04–6.6) kt yr−1. Observed changes in plume composition highlight the coherent geochemical behavior of HCl, HF, HBr, and HI during magmatic degassing, and strong fractionation of these species with respect to SO2.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey reports the characteristics and requirements of UAV networks for envisioned civil applications over the period 2000-2015 from a communications and networking viewpoint and elaborate on general networking related requirements such as connectivity, adaptability, safety, privacy, security, and scalability.
Abstract: The days where swarms of unmanned aerial vehicles (UAVs) will occupy our skies are fast approaching due to the introduction of cost-efficient and reliable small aerial vehicles and the increasing demand for use of such vehicles in a plethora of civil applications. Governments and industry alike have been heavily investing in the development of UAVs. As such it is important to understand the characteristics of networks with UAVs to enable the incorporation of multiple, coordinated aerial vehicles into the air traffic in a reliable and safe manner. To this end, this survey reports the characteristics and requirements of UAV networks for envisioned civil applications over the period 2000–2015 from a communications and networking viewpoint. We survey and quantify quality-of-service requirements, network-relevant mission parameters, data requirements, and the minimum data to be transmitted over the network. Furthermore, we elaborate on general networking related requirements such as connectivity, adaptability, safety, privacy, security, and scalability. We also report experimental results from many projects and investigate the suitability of existing communication technologies for supporting reliable aerial networking.

1,067 citations

Book
26 Aug 2021
TL;DR: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection.
Abstract: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in the UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate more than $45 Billion market value of UAV usage. In this paper, we present UAV civil applications and their challenges. We also discuss the current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including charging challenges, collision avoidance and swarming challenges, and networking and security-related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.

901 citations

Journal ArticleDOI
TL;DR: An overview of different areas of remote sensing applications based on unmanned aerial platforms equipped with a set of specific sensors and instruments is presented, each independent from the others so that the reader does not need to read the full paper when a specific application is of interest.
Abstract: Remotely Piloted Aircraft (RPA) is presently in continuous development at a rapid pace. Unmanned Aerial Vehicles (UAVs) or more extensively Unmanned Aerial Systems (UAS) are platforms considered under the RPAs paradigm. Simultaneously, the development of sensors and instruments to be installed onboard such platforms is growing exponentially. These two factors together have led to the increasing use of these platforms and sensors for remote sensing applications with new potential. Thus, the overall goal of this paper is to provide a panoramic overview about the current status of remote sensing applications based on unmanned aerial platforms equipped with a set of specific sensors and instruments. First, some examples of typical platforms used in remote sensing are provided. Second, a description of sensors and technologies is explored which are onboard instruments specifically intended to capture data for remote sensing applications. Third, multi-UAVs in collaboration, coordination, and cooperation in remote sensing are considered. Finally, a collection of applications in several areas are proposed, where the combination of unmanned platforms and sensors, together with methods, algorithms, and procedures provide the overview in very different remote sensing applications. This paper presents an overview of different areas, each independent from the others, so that the reader does not need to read the full paper when a specific application is of interest

587 citations

Journal ArticleDOI
TL;DR: Atmospheric Chemistry of Iodine Alfonso Saiz-Lopez,* John M. C. Plane,* Alex R. Baker, Lucy J. Carpenter, Roland von Glasow, Juan C. G omez Martín, Gordon McFiggans, and Russell W. Smith.
Abstract: Atmospheric Chemistry of Iodine Alfonso Saiz-Lopez,* John M. C. Plane,* Alex R. Baker, Lucy J. Carpenter, Roland von Glasow, Juan C. G omez Martín, Gordon McFiggans, and Russell W. Saunders Laboratory for Atmospheric and Climate Science (CIAC), CSIC, Toledo, Spain School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom School of Earth, Atmospheric & Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom

429 citations

Journal ArticleDOI
TL;DR: In this article, a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs is presented to better understand human influence on Hg cycling and timescales for responses.
Abstract: [1] Elevated mercury (Hg) in marine and terrestrial ecosystems is a global health concern because of the formation of toxic methylmercury. Humans have emitted Hg to the atmosphere for millennia, and this Hg has deposited and accumulated into ecosystems globally. Here we present a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs to better understand human influence on Hg cycling and timescales for responses. We drive the model with a historical inventory of anthropogenic emissions from 2000 BC to present. Results show that anthropogenic perturbations introduced to surface reservoirs (atmosphere, ocean, or terrestrial) accumulate and persist in the subsurface ocean for decades to centuries. The simulated present-day atmosphere is enriched by a factor of 2.6 relative to 1840 levels, consistent with sediment archives, and by a factor of 7.5 relative to natural levels (2000 BC). Legacy anthropogenic Hg re-emitted from surface reservoirs accounts for 60% of present-day atmospheric deposition, compared to 27% from primary anthropogenic emissions, and 13% from natural sources. We find that only 17% of the present-day Hg in the surface ocean is natural and that half of its anthropogenic enrichment originates from pre-1950 emissions. Although Asia is presently the dominant contributor to primary anthropogenic emissions, only 17% of the surface ocean reservoir is of Asian anthropogenic origin, as compared to 30% of North American and European origin. The accumulated burden of legacy anthropogenic Hg means that future deposition will increase even if primary anthropogenic emissions are held constant. Aggressive global Hg emission reductions will be necessary just to maintain oceanic Hg concentrations at present levels.

375 citations