scispace - formally typeset
Search or ask a question
Author

Galila Agam

Bio: Galila Agam is an academic researcher from Ben-Gurion University of the Negev. The author has contributed to research in topics: Lithium (medication) & Inositol. The author has an hindex of 38, co-authored 180 publications receiving 9630 citations. Previous affiliations of Galila Agam include Soroka Medical Center & Stanley Foundation.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: The results suggest that reduced brain serine racemase and elevated D-amino acid oxidase protein levels may contribute to the lower CSF D-serine levels in schizophrenia.

305 citations

Journal ArticleDOI
TL;DR: A brain-specific reduction in beclin1 expression is shown in postmortem hippocampus of schizophrenia patients, not detected in peripheral lymphocytes, suggesting a direct association with the autophagy process and paving the path to novel targets for drug design.
Abstract: Autophagy is a process preserving the balance between synthesis, degradation and recycling of cellular components and is therefore essential for neuronal survival and function. Several key proteins govern the autophagy pathway including beclin1 and microtubule associated protein 1 light chain 3 (LC3). Here, we show a brain-specific reduction in beclin1 expression in postmortem hippocampus of schizophrenia patients, not detected in peripheral lymphocytes. This is in contrast with activity-dependent neuroprotective protein (ADNP) and ADNP2, which we have previously found to be deregulated in postmortem hippocampal samples from schizophrenia patients, but that now showed a significantly increased expression in lymphocytes from related patients, similar to increases in the anti-apoptotic, beclin1-interacting, Bcl2. The increase in ADNP was associated with the initial stages of the disease, possibly reflecting a compensatory effect. The increase in ADNP2 might be a consequence of neuroleptic treatment, as seen in rats subjected to clozapine treatment. ADNP haploinsufficiency in mice, which results in age-related neuronal death, cognitive and social dysfunction, exhibited reduced hippocampal beclin1 and increased Bcl2 expression (mimicking schizophrenia and normal human aging). At the protein level, ADNP co-immunoprecipitated with LC3B suggesting a direct association with the autophagy process and paving the path to novel targets for drug design.

169 citations

Journal ArticleDOI
TL;DR: Results are consistent with the notion that schizophrenia involves neurodevelopmental pathology, and it remains to be investigated whether the active fraction of GSK-3beta is also low in frontal cortex of schizophrenic patients and if this is also reflected in other brain regions.
Abstract: OBJECTIVE: Glycogen synthase kinase-3 (GSK-3) is a protein kinase that is highly abundant in the brain. It is involved in signal transduction cascades of multiple cellular processes, particularly neurodevelopment. In an attempt to explore possible involvement of GSK-3β in psychiatric disorders, the authors examined its levels in postmortem brain tissue.METHOD: Western blot analysis was performed to measure GSK-3β in the frontal cortex of 14 schizophrenic patients, 15 patients with bipolar disorder, 15 patients with unipolar depression, and 14 normal comparison subjects.RESULTS: GSK-3β levels were 41% lower in the schizophrenic patients than in the comparison subjects. Other diagnostic groups did not differ from the comparison subjects.CONCLUSIONS: These results are consistent with the notion that schizophrenia involves neurodevelopmental pathology. It remains to be investigated whether the active fraction of GSK-3β, or its activity, is also low in frontal cortex of schizophrenic patients and if this is al...

169 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations

Journal ArticleDOI
TL;DR: This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry.
Abstract: This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence. The morphological correlates of schizophrenia are subtle, and range from a slight reduction in brain size to localized alterations in the morphology and molecular composition of specific neuronal, synaptic, and glial populations in the hippocampus, dorsolateral prefrontal cortex, and dorsal thalamus. These findings have fostered the view of schizophrenia as a disorder of connectivity and of the synapse. Although attractive, such concepts are vague, and differentiating primary events from epiphenomena has been difficult. A way forward is provided by the recent identification of several putative susceptibility genes (including neuregulin, dysbindin, COMT, DISC1, RGS4, GRM3, and G72). We discuss the evidence for these and other genes, along with what is known of their expression profiles and biological roles in brain and how these may be altered in schizophrenia. The evidence for several of the genes is now strong. However, for none, with the likely exception of COMT, has a causative allele or the mechanism by which it predisposes to schizophrenia been identified. Nevertheless, we speculate that the genes may all converge functionally upon schizophrenia risk via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry. NMDA receptor-mediated glutamate transmission may be especially implicated, though there are also direct and indirect links to dopamine and GABA signalling. Hence, there is a correspondence between the putative roles of the genes at the molecular and synaptic levels and the existing understanding of the disorder at the neural systems level. Characterization of a core molecular pathway and a 'genetic cytoarchitecture' would be a profound advance in understanding schizophrenia, and may have equally significant therapeutic implications.

1,879 citations