scispace - formally typeset
Search or ask a question
Author

Gam D. Nguyen

Bio: Gam D. Nguyen is an academic researcher from United States Naval Research Laboratory. The author has contributed to research in topics: Wireless network & Throughput. The author has an hindex of 24, co-authored 79 publications receiving 3664 citations. Previous affiliations of Gam D. Nguyen include United States Department of the Navy.


Papers
More filters
Proceedings ArticleDOI
26 Mar 2000
TL;DR: This work develops the broadcast incremental power algorithm, and adapt it to multicast operation as well, and demonstrates that this algorithm provides better performance than algorithms that have been developed for the link-based, wired environment.
Abstract: The wireless networking environment presents formidable challenges to the study of broadcasting and multicasting problems. After addressing the characteristics of wireless networks that distinguish them from wired networks, we introduce and evaluate algorithms for tree construction in infrastructureless, all-wireless applications. The performance metric used to evaluate broadcast and multicast trees is energy-efficiency. We develop the broadcast incremental power algorithm, and adapt it to multicast operation as well. This algorithm exploits the broadcast nature of the wireless communication environment, and addresses the need for energy-efficient operation. We demonstrate that our algorithm provides better performance than algorithms that have been developed for the link-based, wired environment.

1,149 citations

Journal ArticleDOI
TL;DR: This paper introduces and evaluates algorithms for tree construction in infrastructureless, all-wireless applications, and develops the Broadcast Incremental Power algorithm, and adapts it to multicast operation by introducing the MIP algorithm.
Abstract: The wireless networking environment presents formidable challenges to the study of broadcasting and multicasting problems. In this paper we focus on the problem of multicast tree construction, and we introduce and evaluate algorithms for tree construction in infrastructureless, all-wireless applications. The performance metric used to evaluate broadcast and multicast trees is energy-efficiency. We develop the Broadcast Incremental Power (BIP) algorithm, and adapt it to multicast operation by introducing the Multicast Incremental Power (MIP) algorithm. These algorithms exploit the broadcast nature of the wireless communication environment, and address the need for energy-efficient operation. We demonstrate that our algorithms provide better performance than algorithms that have been developed for the link-based, wired environment.

343 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the incorporation of energy considerations into multicast algorithms can, indeed, result in improved energy efficiency.
Abstract: In this paper we address the problem of multicasting in ad hoc wireless networks from the viewpoint of energy efficiency. We discuss the impact of hte wireless medium on the multicasting problem and the fundamental trade-offs that arise. We propose and evaluate several algorithms for defining multicast trees for session (or connection-oriented) traffic when transceiver resources are limited. The algorithms select the relay nodes and the corresponding transmission power levels, and achieve different degrees of scalability and performance. We demonstrate that the incorporation of energy considerations into multicast algorithms can, indeed, result in improved energy efficiency.

265 citations

Journal ArticleDOI
TL;DR: A system in which a sensor sends random status updates over a dynamic network to a monitor is studied, and an approximation that is shown to be close to the simulated age of the status age is provided.
Abstract: This paper focuses on status age, which is a metric for measuring the freshness of a continually updated piece of information (i.e., status) as observed at a remote monitor. In paper, we study a system in which a sensor sends random status updates over a dynamic network to a monitor. For this system, we consider the impact of having messages take different routes through the network on the status age. First, we consider a network with plentiful resources (i.e., many nodes that can provide numerous alternate paths), so that packets need not wait in queues at each node in a multihop path. This system is modeled as a single queue with an infinite number of servers, specifically as an $M/M/\infty $ queue. Packets routed over a dynamic network may arrive at the monitor out of order, which we account for in our analysis for the $M/M/\infty $ model. We then consider a network with somewhat limited resources, so that packets can arrive out of order but also must wait in a queue. This is modeled as a single queue with two servers, specifically an $M/M/2$ queue. We present the exact approach to computing the analytical status age, and we provide an approximation that is shown to be close to the simulated age. We also compare both models with $M/M/1$ , which corresponds to severely limited network resources, and we demonstrate the tradeoff between the status age and the unnecessary network resource consumption.

221 citations

Journal ArticleDOI
TL;DR: This paper introduces a packet deadline as a control mechanism to study its impact on the average age of information for an M/M/1/2 queueing system and derives closed-form expressions for theaverage age.
Abstract: We study the age of information , which is a measure of the freshness of a continually updated piece of information as observed at a remote monitor. The age of information metric has been studied for a variety of different queueing systems, and in this paper, we introduce a packet deadline as a control mechanism to study its impact on the average age of information for an M/M/1/2 queueing system. We analyze the system for the cases of a fixed deadline and a random exponential deadline and derive closed-form expressions for the average age. We also derive a closed-form expression for the optimal average deadline for the random exponential case. Our numerical results show the relationship of the age performance to that of the M/M/1/1 and M/M/1/2 systems, and we demonstrate that using a deadline can outperform both the M/M/1/1 and M/M/1/2 without deadline.

176 citations


Cited by
More filters
Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations

Journal ArticleDOI
01 Jul 2003
TL;DR: The important role that mobile ad hoc networks play in the evolution of future wireless technologies is explained and the latest research activities in these areas are reviewed, including a summary of MANETs characteristics, capabilities, applications, and design constraints.
Abstract: Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, ‘‘ad-hoc’’ network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANETs characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future. � 2003 Elsevier B.V. All rights reserved.

1,430 citations

Book
12 Aug 2005
TL;DR: In this article, the authors state several problems related to topology control in wireless ad hoc and sensor networks, and survey state-of-the-art solutions which have been proposed to tackle them.
Abstract: Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes' transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.

1,367 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: In this paper, a simple, cheat-proof, credit-based system for stimulating cooperation among selfish nodes in mobile ad hoc networks is proposed, which does not require any tamper-proof hardware at any node.
Abstract: Mobile ad hoc networking has been an active research area for several years. How to stimulate cooperation among selfish mobile nodes, however, is not well addressed yet. In this paper, we propose Sprite, a simple, cheat-proof, credit-based system for stimulating cooperation among selfish nodes in mobile ad hoc networks. Our system provides incentive for mobile nodes to cooperate and report actions honestly. Compared with previous approaches, our system does not require any tamper-proof hardware at any node. Furthermore, we present a formal model of our system and prove its properties. Evaluations of a prototype implementation show that the overhead of our system is small. Simulations and analysis show that mobile nodes can cooperate and forward each other's messages, unless the resource of each node is extremely low.

1,330 citations

Journal ArticleDOI
TL;DR: This paper presents an improved scheme, called PEGASIS (power-efficient gathering in sensor information systems), which is a near-optimal chain-based protocol that minimizes energy, and presents two new schemes that attempt to balance the energy and delay cost for data gathering from sensor networks.
Abstract: Gathering sensed information in an energy efficient manner is critical to operating the sensor network for a long period of time. The LEACH protocol presented by Heinzelman et al. (2000) is an elegant solution where clusters are formed to fuse data before transmitting to the base station. In this paper, we present an improved scheme, called PEGASIS (power-efficient gathering in sensor information systems), which is a near-optimal chain-based protocol that minimizes energy. In PEGASIS, each node communicates only with a close neighbor and takes turns transmitting to the base station, thus reducing the amount of energy spent per round. Simulation results show that PEGASIS performs better than LEACH. For many applications, in addition to minimizing energy, it is also important to consider the delay incurred in gathering sensed data. We capture this with the energy /spl times/ delay metric and present schemes that attempt to balance the energy and delay cost for data gathering from sensor networks. We present two new schemes to minimize energy /spl times/ delay using CDMA and non-CDMA sensor nodes. We compared the performance of direct, LEACH, and our schemes with respect to energy /spl times/ delay using extensive simulations for different network sizes. Results show that our schemes perform 80 or more times better than the direct scheme and also outperform the LEACH protocol.

1,194 citations