scispace - formally typeset
Search or ask a question
Author

Gamal S. El Baroty

Bio: Gamal S. El Baroty is an academic researcher from Cairo University. The author has contributed to research in topics: DPPH & Biodiesel. The author has an hindex of 7, co-authored 10 publications receiving 182 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the application of algal extracts to wheat plants irrigated with SW is useful for improvement of salinity tolerance, which can be triggered by the stimulation of antioxidant components and protein content.
Abstract: BACKGROUND: The present study was designed to investigate the enhanced antioxidant capacity of whole grains from wheat plants grown under seawater stress in response to microalgae extract treatment. RESULTS: The total carotenoid (TCAR), tocopherol (TOC), phenolic (TPC), and protein (PC) contents in whole grains of wheat plants irrigated with 10% and 20% (v/v) seawater (SW) in response to water extracts of microalgae Spirulina maxima (SME) and Chlorella ellipsoida (CEE) as well as exogenous plant growth enhancers of ascorbic acid and benzyladenine treatments were measured. The results showed that the levels of enhanced TCAR (range 0.08–0.14 g kg−1), TOC (range 0.05–0.12 g kg−1), TPC (range 0.80–2.96 g kg−1) and PC (range 93.4–137.9 g kg−1) in wheat grains of plants irrigated with 10% and 20% SW were significantly increased in response to SME and CEE treatments. Evaluation of antioxidant activity of ethanolic extracts of grains of SW-stressed plants indicated that DPPH and TBAS radical scavenging activity was significantly increased in response to SME and CEE treatments and coincided with the increase in levels of antioxidant compounds present in each extract. The electrophoretic profiles of the grains of proteins of treated samples exhibited quite different patterns from those in control samples. CONCLUSION: The results suggest that the application of algal extracts to wheat plants irrigated with SW is useful for improvement of salinity tolerance. This effect can be triggered by the stimulation of antioxidant components and protein content. Copyright © 2009 Society of Chemical Industry

69 citations

Journal ArticleDOI
TL;DR: It could be concluded that functional biscuits had good sensory and nutritional profiles and can be developed as new niche food market.
Abstract: The aim of the present work is to study the effect of incorporation of biomass and phycocyanin extracts of Spirulina platensis growing in define media at large scales (300 liters, limited in nitrogen and high salinity) to traditional butter biscuits in order to increase general mental health as functional products, FPs). The FP were manufactured at a pilot scale formulated by adding algal biomass (0.3, 0.6 and 0.9%) and S. platensis phycocyanin (at 0.3%) to wheat flour and stored for one month at room temperature, protected from light and air. The approximate and nutrition composition of S. platensis biomass showed high quantity (% dry weight, dw.) of phycocyanin (13.51%, natural food colorant), tocopherols (0.43%), carotenoids (2.65%), vitamins C (1.25%), -6, -3 fatty acids, essential elements (Fe, Zn, Cr, Se, and others) and antioxidant compounds includes: total phenolic (1.73%), flavonoids (0.87%) and glutathione (0.245 mM). FPs showed a high oxidative stability during storage (30 days) periods (as assessed by antiradical scavenging activity of DPPH and TBA test), compared with that in untreated food products (control). Data of sensory evaluation revealed that FPs containing S. platensis biomass or algae extracts were significantly acceptable as control for main sensory characteristics (colour, odour/ aroma, flavor, texture, the global appreciation and overall acceptability). S. platensis FPs presented an accentuated green tonality, which increase with the quantity of added biomass. Thus, it could be concluded that functional biscuits had good sensory and nutritional profiles and can be developed as new niche food market.

60 citations

Journal ArticleDOI
TL;DR: S. obliquus protein hydrolysates have a potential as antioxidative neutraceutical ingredients and a potential therapeutic agent against Coxsackie B3 virus.

49 citations

Journal ArticleDOI
TL;DR: This is the first report on L-asparaginase production in S. maxima and MS L-AsnA activity was found to be directly proportional to the N2 concentration.
Abstract: L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA from Spirulina maxima (SM) were tested. SM cultures grown in Zarrouk medium containing different N2 (in NaNO3 form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2 concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2 cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production in S. maxima.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The status of utilising microalgae as an ingredient in innovative food products with potential health benefits is described, mainly because of the underdeveloped technologies and processes currently available formicroalgae processing.
Abstract: Microalgae have demonstrated potential to meet the population's need for a more sustainable food supply, specifically with respect to protein demand. These promising protein sources present several advantages over other currently used raw materials from an environmental point of view. Additionally, one of the main characteristics of microalgae is the production of bioactive compounds with potential benefits for human health. Microalgae exploitation as a source of protein (bulk protein) and other valuable products within the food industry still presents some drawbacks, mainly because of the underdeveloped technologies and processes currently available for microalgae processing. The systematic improvement of the technology readiness level (TRL) could help change the current situation if applied to microalgae cultivation and processing. High maturity in microalgae cultivation and processing technologies also requires improvement of the economy of scale and investment of resources in new facilities and research. Antioxidative, antihypertensive, immunomodulatory, anticancerogenic, hepato-protective, and anticoagulant activities have been attributed to some microalgae-derived compounds such as peptides. Nevertheless, research on this topic is scarce and the evidence on potential health benefits is not strong. In the last years, the possibility of using microalgae-derived compounds for innovative functional food products has become of great interest, but the literature available mainly focuses more on the addition of the whole cells or some compound already available on the market. This review describes the status of utilising microalgae as an ingredient in innovative food products with potential health benefits.

327 citations

Journal ArticleDOI
01 Apr 2019-Agronomy
TL;DR: Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.
Abstract: Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.

239 citations

Journal ArticleDOI
TL;DR: Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Abstract: Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides—hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.

213 citations

Journal ArticleDOI
TL;DR: Microalgae can be regarded as an alternative and promising food ingredient due to their nutritional composition, richness in bioactive compounds, and because they are considered a sustainable protein source for the future.
Abstract: Microalgae can be regarded as an alternative and promising food ingredient due to their nutritional composition, richness in bioactive compounds, and because they are considered a sustainable protein source for the future. The aim of this work was to evaluate microalgae ( Arthrospira platensis F&M-C256, Chlorella vulgaris Allma, Tetraselmis suecica F&M-M33 and Phaeodactylum tricornutum F&M-M40) as innovative ingredients to enhance functional properties of cookies. Two biomass levels were tested and compared to control: 2% (w/w) and 6% (w/w), to provide high levels of algae-bioactives. The cookies sensory and physical properties were evaluated during eight weeks showing high color and texture stability. Cookies prepared with A. platensis and C. vulgaris presented significantly ( p A. platensis cookies were preferred. Besides, A. platensis also provided a structuring effect in terms of cookies texture. All microalgae-based cookies showed significantly higher ( p in vitro antioxidant capacity compared to the control. No significant difference ( p in vitro digestibility between microalgae cookies and the control was found.

188 citations

Journal ArticleDOI
TL;DR: An overview on Chlorella and Spirulina microalgae particularly as an alternative source of functional foods nutraceuticals and food supplements in which the following compound groups were addressed I Long Chain Polyunsaturated Fatty Acids II Phenolic Compounds III Volatile Compounds IV Sterols V Proteins Amino Acids Peptides VI Vitamins VII Polysaccharides VIII Pigments and IX Food as mentioned in this paper.
Abstract: Chlorella nbsp and nbsp Spirulina are the two of the most well known microalgae genus Both microalgae genus have a significant content of proteins vitamins pigments fatty acids sterols among others which make their production application by the food industry quite interesting nbsp Chlorella genus is a eukaryotic microorganism whereas Spirulina genus cyanobacteria is a prokaryotic microorganism The aim of this review was to provide an overview on Chlorella and Spirulina microalgae particularly as an alternative source of functional foods nutraceuticals and food supplements in which the following compound groups were addressed I Long Chain Polyunsaturated Fatty Acids II Phenolic Compounds III Volatile Compounds IV Sterols V Proteins Amino Acids Peptides VI Vitamins VII Polysaccharides VIII Pigments and IX Food Chlorella and Spirulina microalgae and their derivatives are concluded not to be widely commercially exploited However they are remarkable sources of functional foods nutraceuticals and food supplements

173 citations