scispace - formally typeset
Search or ask a question
Author

Gang Sun

Other affiliations: SenseTime
Bio: Gang Sun is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Convolutional neural network & Feature (computer vision). The author has an hindex of 7, co-authored 12 publications receiving 8592 citations. Previous affiliations of Gang Sun include SenseTime.

Papers
More filters
Journal ArticleDOI
18 Jun 2018
TL;DR: This work proposes a novel architectural unit, which is term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels and finds that SE blocks produce significant performance improvements for existing state-of-the-art deep architectures at minimal additional computational cost.
Abstract: The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we term the “Squeeze-and-Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and reduced the top-5 error to 2.251 percent, surpassing the winning entry of 2016 by a relative improvement of ${\sim }$ ∼ 25 percent. Models and code are available at https://github.com/hujie-frank/SENet .

14,807 citations

Posted Content
TL;DR: Squeeze-and-excitation (SE) as mentioned in this paper adaptively recalibrates channel-wise feature responses by explicitly modeling interdependencies between channels, which can be stacked together to form SENet architectures.
Abstract: The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and reduced the top-5 error to 2.251%, surpassing the winning entry of 2016 by a relative improvement of ~25%. Models and code are available at this https URL.

5,411 citations

Posted Content
Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, Gang Sun 
TL;DR: A state-of-the-art image recognition system, Deep Image, developed using end-to-end deep learning, which achieves excellent results on multiple challenging computer vision benchmarks.
Abstract: We present a state-of-the-art image recognition system, Deep Image, developed using end-to-end deep learning. The key components are a custom-built supercomputer dedicated to deep learning, a highly optimized parallel algorithm using new strategies for data partitioning and communication, larger deep neural network models, novel data augmentation approaches, and usage of multi-scale high-resolution images. Our method achieves excellent results on multiple challenging computer vision benchmarks.

363 citations

Proceedings ArticleDOI
Wangjiang Zhu1, Jie Hu2, Gang Sun2, Xudong Cao2, Yu Qiao 
01 Jun 2016
TL;DR: A key volume mining deep framework to identify key volumes and conduct classification simultaneously and an effective yet simple "unsupervised key volume proposal" method for high quality volume sampling are proposed.
Abstract: Recently, deep learning approaches have demonstrated remarkable progresses for action recognition in videos. Most existing deep frameworks equally treat every volume i.e. spatial-temporal video clip, and directly assign a video label to all volumes sampled from it. However, within a video, discriminative actions may occur sparsely in a few key volumes, and most other volumes are irrelevant to the labeled action category. Training with a large proportion of irrelevant volumes will hurt performance. To address this issue, we propose a key volume mining deep framework to identify key volumes and conduct classification simultaneously. Specifically, our framework is trained is optimized in an alternative way integrated to the forward and backward stages of Stochastic Gradient Descent (SGD). In the forward pass, our network mines key volumes for each action class. In the backward pass, it updates network parameters with the help of these mined key volumes. In addition, we propose "Stochastic out" to model key volumes from multi-modalities, and an effective yet simple "unsupervised key volume proposal" method for high quality volume sampling. Our experiments show that action recognition performance can be significantly improved by mining key volumes, and we achieve state-of-the-art performance on HMDB51 and UCF101 (93.1%).

268 citations

Proceedings Article
01 Jan 2018
TL;DR: Gathering and Excite as mentioned in this paper proposes a pair of operators: gather and excite, which redistributes the pooled information to local features, which can be integrated directly in existing architectures to improve their performance.
Abstract: While the use of bottom-up local operators in convolutional neural networks (CNNs) matches well some of the statistics of natural images, it may also prevent such models from capturing contextual long-range feature interactions. In this work, we propose a simple, lightweight approach for better context exploitation in CNNs. We do so by introducing a pair of operators: gather, which efficiently aggregates feature responses from a large spatial extent, and excite, which redistributes the pooled information to local features. The operators are cheap, both in terms of number of added parameters and computational complexity, and can be integrated directly in existing architectures to improve their performance. Experiments on several datasets show that gather-excite can bring benefits comparable to increasing the depth of a CNN at a fraction of the cost. For example, we find ResNet-50 with gather-excite operators is able to outperform its 101-layer counterpart on ImageNet with no additional learnable parameters. We also propose a parametric gather-excite operator pair which yields further performance gains, relate it to the recently-introduced Squeeze-and-Excitation Networks, and analyse the effects of these changes to the CNN feature activation statistics.

198 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

Journal ArticleDOI
18 Jun 2018
TL;DR: This work proposes a novel architectural unit, which is term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels and finds that SE blocks produce significant performance improvements for existing state-of-the-art deep architectures at minimal additional computational cost.
Abstract: The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we term the “Squeeze-and-Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and reduced the top-5 error to 2.251 percent, surpassing the winning entry of 2016 by a relative improvement of ${\sim }$ ∼ 25 percent. Models and code are available at https://github.com/hujie-frank/SENet .

14,807 citations

Posted Content
TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on our PReLU networks (PReLU-nets), we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66%). To our knowledge, our result is the first to surpass human-level performance (5.1%, Russakovsky et al.) on this visual recognition challenge.

11,866 citations

Journal ArticleDOI
TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Abstract: Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.

5,782 citations