scispace - formally typeset
Search or ask a question
Author

Gang Zhou

Bio: Gang Zhou is an academic researcher from Shandong University of Science and Technology. The author has contributed to research in topics: Wireless sensor network & Throughput. The author has an hindex of 41, co-authored 216 publications receiving 9420 citations. Previous affiliations of Gang Zhou include University of Virginia & Hohai University.


Papers
More filters
Proceedings ArticleDOI
06 Jun 2004
TL;DR: The RIM model is the first to bridge the discrepancy between spherical radio models used by simulators and the physical reality of radio signals, and shows that radio irregularity has a significant impact on routing protocols, but a relatively small impact on MAC protocols.
Abstract: In this paper, we investigate the impact of radio irregularity on the communication performance in wireless sensor networks. Radio irregularity is a common phenomenon which arises from multiple factors, such as variance in RF sending power and different path losses depending on the direction of propagation. From our experiments, we discover that the variance in received signal strength is largely random; however, it exhibits a continuous change with incremental changes in direction. With empirical data obtained from the MICA2 platform, we establish a radio model for simulation, called the Radio Irregularity Model (RIM). This model is the first to bridge the discrepancy between spherical radio models used by simulators and the physical reality of radio signals. With this model, we are able to analyze the impact of radio irregularity on some of the well-known MAC and routing protocols. Our results show that radio irregularity has a significant impact on routing protocols, but a relatively small impact on MAC protocols. Finally, we propose six solutions to deal with radio irregularity. We evaluate two of them in detail. The results obtained from both the simulation and a running testbed demonstrate that our solutions greatly improve communication performance in the presence of radio irregularity.

835 citations

Journal ArticleDOI
TL;DR: The design and implementation of a complete running system, called VigilNet, for energy-efficient surveillance, which allows a group of cooperating sensor devices to detect and track the positions of moving vehicles in an energy- efficient and stealthy manner is described.
Abstract: This article describes one of the major efforts in the sensor network community to build an integrated sensor network system for surveillance missions. The focus of this effort is to acquire and verify information about enemy capabilities and positions of hostile targets. Such missions often involve a high element of risk for human personnel and require a high degree of stealthiness. Hence, the ability to deploy unmanned surveillance missions, by using wireless sensor networks, is of great practical importance for the military. Because of the energy constraints of sensor devices, such systems necessitate an energy-aware design to ensure the longevity of surveillance missions. Solutions proposed recently for this type of system show promising results through simulations. However, the simplified assumptions they make about the system in the simulator often do not hold well in practice, and energy consumption is narrowly accounted for within a single protocol. In this article, we describe the design and implementation of a complete running system, called VigilNet, for energy-efficient surveillance. The VigilNet allows a group of cooperating sensor devices to detect and track the positions of moving vehicles in an energy-efficient and stealthy manner. We evaluate VigilNet middleware components and integrated system extensively on a network of 70 MICA2 motes. Our results show that our surveillance strategy is adaptable and achieves a significant extension of network lifetime. Finally, we share lessons learned in building such an integrated sensor system.

550 citations

Proceedings ArticleDOI
03 Jun 2009
TL;DR: A novel fall detection system using both accelerometers and gyroscopes that reduces both false positives and false negatives, while improving fall detection accuracy, and features low computational cost and real-time response.
Abstract: Falls are dangerous for the aged population as they can adversely affect health. Therefore, many fall detection systems have been developed. However, prevalent methods only use accelerometers to isolate falls from activities of daily living (ADL). This makes it difficult to distinguish real falls from certain fall-like activities such as sitting down quickly and jumping, resulting in many false positives. Body orientation is also used as a means of detecting falls, but it is not very useful when the ending position is not horizontal, e.g. falls happen on stairs. In this paper we present a novel fall detection system using both accelerometers and gyroscopes. We divide human activities into two categories: static postures and dynamic transitions. By using two tri-axial accelerometers at separate body locations, our system can recognize four kinds of static postures: standing, bending, sitting, and lying. Motions between these static postures are considered as dynamic transitions. Linear acceleration and angular velocity are measured to determine whether motion transitions are intentional. If the transition before a lying posture is not intentional, a fall event is detected. Our algorithm, coupled with accelerometers and gyroscopes, reduces both false positives and false negatives, while improving fall detection accuracy. In addition, our solution features low computational cost and real-time response.

543 citations

Proceedings ArticleDOI
31 Oct 2006
TL;DR: ATPC is presented, a lightweight algorithm of Adaptive Transmission Power Control for wireless sensor networks that employs a feedback-based transmission power control algorithm to dynamically maintain individual link quality over time and is robust even with environmental changes over time.
Abstract: Extensive empirical studies presented in this paper confirm that the quality of radio communication between low power sensor devices varies significantly with time and environment. This phenomenon indicates that the previous topology control solutions, which use static transmission power, transmission range, and link quality, might not be effective in the physical world. To address this issue, online transmission power control that adapts to external changes is necessary. This paper presents ATPC, a lightweight algorithm of Adaptive Transmission Power Control for wireless sensor networks. In ATPC, each node builds a model for each of its neighbors, describing the correlation between transmission power and link quality. With this model, we employ a feedback-based transmission power control algorithm to dynamically maintain individual link quality over time. The intellectual contribution of this work lies in a novel pairwise transmission power control, which is significantly different from existing node-level or network-level power control methods. Also different from most existing simulation work, the ATPC design is guided by extensive field experiments of link quality dynamics at various locations and over a long period of time. The results from the real-world experiments demonstrate that 1) with pairwise adjustment, ATPC achieves more energy savings with a finer tuning capability and 2) with online control, ATPC is robust even with environmental changes over time.

540 citations

Journal ArticleDOI
TL;DR: This model is the first to bridge the discrepancy between the spherical radio models used by simulators and the physical reality of radio signals, and shows that radio irregularity has a relatively larger impact on the routing layer than the MAC layer, and makes it harder to maintain communication connectivity in topology control.
Abstract: In this article, we investigate the impact of radio irregularity on wireless sensor networks. Radio irregularity is a common phenomenon that arises from multiple factors, such as variance in RF sending power and different path losses, depending on the direction of propagation. From our experiments, we discover that the variance in received signal strength is largely random; however, it exhibits a continuous change with incremental changes in direction. With empirical data obtained from the MICA2 and MICAZ platforms, we establish a radio model for simulation, called the Radio Irregularity Model (RIM). This model is the first to bridge the discrepancy between the spherical radio models used by simulators and the physical reality of radio signals. With this model, we investigate the impact of radio irregularity on several upper layer protocols, including MAC, routing, localization and topology control. Our results show that radio irregularity has a relatively larger impact on the routing layer than the MAC layer. It also shows that radio irregularity leads to larger localization errors and makes it harder to maintain communication connectivity in topology control. To deal with these issues, we present eight solutions to deal with radio irregularity. We evaluate three of them in detail. The results obtained from both the simulations and a running testbed demonstrate that our solutions greatly improve system performance in the presence of radio irregularity.

435 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
01 Sep 2012
TL;DR: A survey of technologies, applications and research challenges for Internetof-Things is presented, in which digital and physical entities can be linked by means of appropriate information and communication technologies to enable a whole new class of applications and services.
Abstract: The term ‘‘Internet-of-Things’’ is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internetof-Things.

3,172 citations

Journal ArticleDOI
TL;DR: Various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications are surveyed and the implications of recharge opportunities on sensor node operation and design of sensor network solutions are discussed.
Abstract: Sensor networks with battery-powered nodes can seldom simultaneously meet the design goals of lifetime, cost, sensing reliability and sensing and transmission coverage. Energy-harvesting, converting ambient energy to electrical energy, has emerged as an alternative to power sensor nodes. By exploiting recharge opportunities and tuning performance parameters based on current and expected energy levels, energy harvesting sensor nodes have the potential to address the conflicting design goals of lifetime and performance. This paper surveys various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications. The study also discusses the implications of recharge opportunities on sensor node operation and design of sensor network solutions.

1,870 citations