scispace - formally typeset
Search or ask a question
Author

GangnetMichel

Bio: GangnetMichel is an academic researcher. The author has contributed to research in topics: Interpolation & Image gradient. The author has an hindex of 1, co-authored 1 publications receiving 1062 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Using generic interpolation machinery based on solving Poisson equations, a variety of novel tools are introduced for seamless editing of image regions as discussed by the authors, and the first set of tools permits the seamless...
Abstract: Using generic interpolation machinery based on solving Poisson equations, a variety of novel tools are introduced for seamless editing of image regions. The first set of tools permits the seamless ...

1,183 citations


Cited by
More filters
Proceedings ArticleDOI
26 Jun 2006
TL;DR: A spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model, and which reduces to a well conditioned sparse linear system.
Abstract: We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, our Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model. Experimenting with publicly available scan data, we demonstrate reconstruction of surfaces with greater detail than previously achievable.

2,712 citations

Journal ArticleDOI
20 Jul 2017
TL;DR: This work presents a novel approach for image completion that results in images that are both locally and globally consistent, with a fully-convolutional neural network that can complete images of arbitrary resolutions by filling-in missing regions of any shape.
Abstract: We present a novel approach for image completion that results in images that are both locally and globally consistent. With a fully-convolutional neural network, we can complete images of arbitrary resolutions by filling-in missing regions of any shape. To train this image completion network to be consistent, we use global and local context discriminators that are trained to distinguish real images from completed ones. The global discriminator looks at the entire image to assess if it is coherent as a whole, while the local discriminator looks only at a small area centered at the completed region to ensure the local consistency of the generated patches. The image completion network is then trained to fool the both context discriminator networks, which requires it to generate images that are indistinguishable from real ones with regard to overall consistency as well as in details. We show that our approach can be used to complete a wide variety of scenes. Furthermore, in contrast with the patch-based approaches such as PatchMatch, our approach can generate fragments that do not appear elsewhere in the image, which allows us to naturally complete the images of objects with familiar and highly specific structures, such as faces.

1,961 citations

Journal ArticleDOI
TL;DR: SIFT flow is proposed, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence.
Abstract: While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow, where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes. The SIFT flow algorithm consists of matching densely sampled, pixelwise SIFT features between two images while preserving spatial discontinuities. The SIFT features allow robust matching across different scene/object appearances, whereas the discontinuity-preserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed approach robustly aligns complex scene pairs containing significant spatial differences. Based on SIFT flow, we propose an alignment-based large database framework for image analysis and synthesis, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence. This framework is demonstrated through concrete applications such as motion field prediction from a single image, motion synthesis via object transfer, satellite image registration, and face recognition.

1,726 citations

Proceedings ArticleDOI
29 Jul 2007
TL;DR: In this article, seam carving is used for content-aware image resizing for both reduction and expansion, where an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function.
Abstract: Effective resizing of images should not only use geometric constraints, but consider the image content as well We present a simple image operator called seam carving that supports content-aware image resizing for both reduction and expansion A seam is an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function By repeatedly carving out or inserting seams in one direction we can change the aspect ratio of an image By applying these operators in both directions we can retarget the image to a new size The selection and order of seams protect the content of the image, as defined by the energy function Seam carving can also be used for image content enhancement and object removal We support various visual saliency measures for defining the energy of an image, and can also include user input to guide the process By storing the order of seams in an image we create multi-size images, that are able to continuously change in real time to fit a given size

1,652 citations

Book ChapterDOI
Guilin Liu1, Fitsum A. Reda1, Kevin J. Shih1, Ting-Chun Wang1, Andrew Tao1, Bryan Catanzaro1 
08 Sep 2018
TL;DR: This work proposes the use of partial convolutions, where the convolution is masked and renormalized to be conditioned on only valid pixels, and outperforms other methods for irregular masks.
Abstract: Existing deep learning based image inpainting methods use a standard convolutional network over the corrupted image, using convolutional filter responses conditioned on both valid pixels as well as the substitute values in the masked holes (typically the mean value). This often leads to artifacts such as color discrepancy and blurriness. Post-processing is usually used to reduce such artifacts, but are expensive and may fail. We propose the use of partial convolutions, where the convolution is masked and renormalized to be conditioned on only valid pixels. We further include a mechanism to automatically generate an updated mask for the next layer as part of the forward pass. Our model outperforms other methods for irregular masks. We show qualitative and quantitative comparisons with other methods to validate our approach.

1,606 citations