scispace - formally typeset
Search or ask a question
Author

Gaohua Zhu

Bio: Gaohua Zhu is an academic researcher from Toyota. The author has contributed to research in topics: Thermoelectric effect & Thermoelectric materials. The author has an hindex of 14, co-authored 32 publications receiving 2843 citations. Previous affiliations of Gaohua Zhu include Massachusetts Institute of Technology & Toyota Motor Engineering & Manufacturing North America.

Papers
More filters
Journal ArticleDOI
TL;DR: A dimensionless thermoelectric figure-of-merit (ZT) of 0.95 in p-type nanostructured bulk silicon germanium (SiGe) alloys is achieved, which is about 90% higher than what is currently used in space flight missions, and half higher than the reported record.
Abstract: A dimensionless thermoelectric figure-of-merit (ZT) of 0.95 in p-type nanostructured bulk silicon germanium (SiGe) alloys is achieved, which is about 90% higher than what is currently used in space flight missions, and 50% higher than the reported record in p-type SiGe alloys. These nanostructured bulk materials were made by using a direct current-induced hot press of mechanically alloyed nanopowders that were initially synthesized by ball milling of commercial grade Si and Ge chunks with boron powder. The enhancement of ZT is due to a large reduction of thermal conductivity caused by the increased phonon scattering at the grain boundaries of the nanostructures combined with an increased power factor at high temperatures.

999 citations

Journal ArticleDOI
TL;DR: In this paper, a peak ZT of about 1.3 at 900°C in an n-type nanostructured SiGe bulk alloy has been achieved by using a nanostructure approach, mainly due to a reduction in the thermal conductivity caused by the enhanced phonon scattering off the increased density of nanograin boundaries.
Abstract: The dimensionless thermoelectric figure of merit (ZT) of the n-type silicon germanium (SiGe) bulk alloy at high temperature has remained at about one for a few decades. Here we report that by using a nanostructure approach, a peak ZT of about 1.3 at 900 °C in an n-type nanostructured SiGe bulk alloy has been achieved. The enhancement of ZT comes mainly from a significant reduction in the thermal conductivity caused by the enhanced phonon scattering off the increased density of nanograin boundaries. The enhanced ZT will make such materials attractive in many applications such as solar, thermal, and waste heat conversion into electricity.

686 citations

Journal ArticleDOI
TL;DR: The concept of modulation doping in three-dimensional nanostructured bulk materials to increase the thermoelectric figure of merit is introduced via experiment using composites made of doped silicon nanograins and intrinsic silicon germanium grains.
Abstract: We introduce the concept of modulation doping in three-dimensional nanostructured bulk materials to increase the thermoelectric figure of merit. Modulation-doped samples are made of two types of nanograins (a two-phase composite), where dopants are incorporated only into one type. By band engineering, charge carriers could be separated from their parent grains and moved into undoped grains, which would result in enhanced mobility of the carriers in comparison to uniform doping due to a reduction of ionized impurity scattering. The electrical conductivity of the two-phase composite can exceed that of the individual components, leading to a higher power factor. We here demonstrate the concept via experiment using composites made of doped silicon nanograins and intrinsic silicon germanium grains.

459 citations

Journal ArticleDOI
TL;DR: The mechanism for phonon scattering by nanostructures and by point defects in nano-structured silicon and the silicon germanium (Ge) alloy and their thermoelectric properties are investigated in this article.
Abstract: The mechanism for phonon scattering by nanostructures and by point defects in nanostructured silicon (Si) and the silicon germanium (Ge) alloy and their thermoelectric properties are investigated. We found that the thermal conductivity is reduced by a factor of 10 in nanostructured Si in comparison with bulk crystalline Si. However, nanosize interfaces are not as effective as point defects in scattering phonons with wavelengths shorter than 1 nm. We further found that a $5\text{ }\text{ }\mathrm{at}.\text{ }%$ Ge replacing Si is very efficient in scattering phonons shorter than 1 nm, resulting in a further thermal conductivity reduction by a factor of 2, thereby leading to a thermoelectric figure of merit 0.95 for ${\mathrm{Si}}_{95}{\mathrm{Ge}}_{5}$, similar to that of large grained ${\mathrm{Si}}_{80}{\mathrm{Ge}}_{20}$ alloys.

247 citations


Cited by
More filters
Journal ArticleDOI
20 Sep 2012-Nature
TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Abstract: Controlling the structure of thermoelectric materials on all length scales (atomic, nanoscale and mesoscale) relevant for phonon scattering makes it possible to increase the dimensionless figure of merit to more than two, which could allow for the recovery of a significant fraction of waste heat with which to produce electricity.

3,670 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the principles and present status of bulk nanostructured materials, then describe some of the unanswered questions about carrier transport and how current research is addressing these questions.
Abstract: Thermoelectrics have long been recognized as a potentially transformative energy conversion technology due to their ability to convert heat directly into electricity. Despite this potential, thermoelectric devices are not in common use because of their low efficiency, and today they are only used in niche markets where reliability and simplicity are more important than performance. However, the ability to create nanostructured thermoelectric materials has led to remarkable progress in enhancing thermoelectric properties, making it plausible that thermoelectrics could start being used in new settings in the near future. Of the various types of nanostructured materials, bulk nanostructured materials have shown the most promise for commercial use because, unlike many other nanostructured materials, they can be fabricated in large quantities and in a form that is compatible with existing thermoelectric device configurations. The first generation of these materials is currently being developed for commercialization, but creating the second generation will require a fundamental understanding of carrier transport in these complex materials which is presently lacking. In this review we introduce the principles and present status of bulk nanostructured materials, then describe some of the unanswered questions about carrier transport and how current research is addressing these questions. Finally, we discuss several research directions which could lead to the next generation of bulk nanostructured materials.

1,742 citations

Journal ArticleDOI
TL;DR: This review describes the recent advances in designing high-performance bulk thermoelectric materials and highlights the decoupling of the electron and phonon transport through coherent interface, matrix/precipitate electronic bands alignment, and compositionally alloyed nanostructures.
Abstract: There has been a renaissance of interest in exploring highly efficient thermoelectric materials as a possible route to address the worldwide energy generation, utilization, and management. This review describes the recent advances in designing high-performance bulk thermoelectric materials. We begin with the fundamental stratagem of achieving the greatest thermoelectric figure of merit ZT of a given material by carrier concentration engineering, including Fermi level regulation and optimum carrier density stabilization. We proceed to discuss ways of maximizing ZT at a constant doping level, such as increase of band degeneracy (crystal structure symmetry, band convergence), enhancement of band effective mass (resonant levels, band flattening), improvement of carrier mobility (modulation doping, texturing), and decrease of lattice thermal conductivity (synergistic alloying, second-phase nanostructuring, mesostructuring, and all-length-scale hierarchical architectures). We then highlight the decoupling of th...

1,469 citations

Journal ArticleDOI
29 Sep 2017-Science
TL;DR: The mechanisms and strategies for improving thermoelectric efficiency are reviewed and how to report material performance is discussed, as well as how to develop high-performance materials out of nontoxic and earth-abundant elements.
Abstract: BACKGROUND Heat and electricity are two forms of energy that are at opposite ends of a spectrum Heat is ubiquitous, but with low quality, whereas electricity is versatile, but its production is demanding Thermoelectrics offers a simple and environmentally friendly solution for direct heat-to-electricity conversion A thermoelectric (TE) device can directly convert heat emanating from the Sun, radioisotopes, automobiles, industrial sectors, or even the human body to electricity Electricity also can drive a TE device to work as a solid-state heat pump for distributed spot-size refrigeration TE devices are free of moving parts and feasible for miniaturization, run quietly, and do not emit greenhouse gasses The full potential of TE devices may be unleashed by working in tandem with other energy-conversion technologies Thermoelectrics found niche applications in the 20th century, especially where efficiency was of a lower priority than energy availability and reliability Broader (beyond niche) application of thermoelectrics in the 21st century requires developing higher-performance materials The figure of merit, ZT, is the primary measure of material performance Enhancing the ZT requires optimizing the adversely interdependent electrical resistivity, Seebeck coefficient, and thermal conductivity, as a group On the microscopic level, high material performance stems from a delicate concert among trade-offs between phase stability and instability, structural order and disorder, bond covalency and ionicity, band convergence and splitting, itinerant and localized electronic states, and carrier mobility and effective mass ADVANCES Innovative transport mechanisms are the fountain of youth of TE materials research In the past two decades, many potentially paradigm-changing mechanisms were identified, eg, resonant levels, modulation doping, band convergence, classical and quantum size effects, anharmonicity, the Rashba effect, the spin Seebeck effect, and topological states These mechanisms embody the current states of understanding and manipulating the interplay among the charge, lattice, orbital, and spin degrees of freedom in TE materials Many strategies were successfully implemented in a wide range of materials, eg, V2VI3 compounds, VVI compounds, filled skutterudites and clathrates, half-Heusler alloys, diamond-like structured compounds, Zintl phases, oxides and mixed-anion oxides, silicides, transition metal chalcogenides, and organic materials In addition, advanced material synthesis and processing techniques, for example, melt spinning, self-sustaining heating synthesis, and field-assisted sintering, helped reach a much broader phase space where traditional metallurgy and melt-growth recipes fell short Given the ubiquity of heat and the modular aspects of TE devices, these advances ensure that thermoelectrics plays an important role as part of a solutions package to address our global energy needs OUTLOOK The emerging roles of spin and orbital states, new breakthroughs in multiscale defect engineering, and controlled anharmonicity may hold the key to developing next generation TE materials To accelerate exploring the broad phase space of higher multinary compounds, we need a synergy of theory, machine learning, three-dimensional printing, and fast experimental characterizations We expect this synergy to help refine current materials selection and make TE materials research more data driven We also expect increasing efforts to develop high-performance materials out of nontoxic and earth-abundant elements The desire to move away from Freon and other refrigerant-based cooling should shift TE materials research from power generation to solid-state refrigeration International round-robin measurements to cross-check the high ZT values of emerging materials will help identify those that hold the most promise We hope the renewable energy landscape will be reshaped if the recent trend of progress continues into the foreseeable future

1,457 citations

Journal ArticleDOI
TL;DR: It is discovered that the thermoconductivity of the silicon nanowires can be significantly reduced due to phonon scattering, pointing to a very promising approach to design better thermoelectrical materials.
Abstract: Semiconductor nanowires represent an important class of nanostructure building block for photovoltaics as well as direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of solar energy harvesting. In addition, we have also discovered that the thermoconductivity of the silicon nanowires can be significantly reduced due to phonon scattering, pointing to a very promising approach to design better thermoelectrical materials. It is important to note that the engines that generate most of the world's power typically operate at only 30–40 per cent efficiency, releasing roughly 15 terawatts of heat to the environment. If this “wasted heat” could be recycled, the impact globally would be enormous. Our silicon nanowire thermoelectric technology could have a significant impact in alternative energy generation.

1,306 citations