scispace - formally typeset
Search or ask a question
Author

Gareth Griffiths

Bio: Gareth Griffiths is an academic researcher from University of Oslo. The author has contributed to research in topics: Golgi apparatus & Phagosome. The author has an hindex of 86, co-authored 261 publications receiving 29815 citations. Previous affiliations of Gareth Griffiths include Utrecht University & University of Western Australia.


Papers
More filters
Book
25 Oct 2002
TL;DR: The authors investigates the powerful forces acting on language in the post-colonization text and shows how these texts constitute a radical critique of the assumptions underlying Eurocentric notions of literature and language.
Abstract: The experience of colonization and the challenges of the post-colonial world have produced an explosion of new writing in English. This diverse and powerful body of literature has established a specific practice of colonial writing in cultures as diverse as India, Australia, the West Indies, Africa and Canada. This comprehensive study opens debates about the interrelationships of these literatures, investigates the powerful forces acting on language in the post-colonial text and shows how these texts constitute a radical critique of the assumptions underlying Eurocentric notions of literature and language.

2,130 citations

Journal ArticleDOI
TL;DR: It is shown that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins, which may be involved in Autophagosome biogenesis.
Abstract: Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.

1,664 citations

Book
20 Jan 1995
TL;DR: The Post-Colonial Studies Reader as discussed by the authors is the essential introduction to the most important texts in post-colonial theory and criticism, this second edition has been thoroughly revised and updated to include 121 extracts from key works in the field.
Abstract: The essential introduction to the most important texts in post-colonial theory and criticism, this second edition has been thoroughly revised and updated to include 121 extracts from key works in the field. Leading, as well as lesser known figures in the fields of writing, theory and criticism contribute to this inspiring body of work that includes sections on nationalism, hybridity, diaspora and globalization. The Reader's wide-ranging approach reflects the remarkable diversity of work in the discipline along with the vibrancy of anti-imperialist writing both within and without the metropolitan centres. Covering more debates, topics and critics than any comparable book in its field, The Post-Colonial Studies Reader is the ideal starting point for students and issues a potent challenge to the ways in which we think and write about literature and culture.

1,355 citations

Journal ArticleDOI
24 Oct 1986-Science
TL;DR: A model is proposed whereby three different classes of proteins are sorted into different vesicles in the last Golgi compartment, the trans Golgi network, which corresponds to a tubular reticulum on the trans side of the Golgi stack.
Abstract: The Golgi complex is a series of membrane compartments through which proteins destined for the plasma membrane, secretory vesicles, and lysosomes move sequentially. A model is proposed whereby these three different classes of proteins are sorted into different vesicles in the last Golgi compartment, the trans Golgi network. This compartment corresponds to a tubular reticulum on the trans side of the Golgi stack, previously called Golgi endoplasmic reticulum lysosomes (GERL).

1,178 citations

Book
26 Jun 2013
TL;DR: The authors provides an essential key to understand the issues which characterize post-colonialism, explaining what it is, where it is encountered and why it is crucial in forging new cultural identities.
Abstract: This volume provides an essential key to understanding the issues which characterize post-colonialism, explaining what it is, where it is encountered and why it is crucial in forging new cultural identities. As a subject, post-colonial studies stands at the intersection of debates about race, colonialism, gender, politics and language. In the language of post-colonial studies, some words are new, others are familiar words charged with new significance. Among over 100 entries, this book includes definitions of: diaspora Fanonism hybridity imperialism Manicheanism mimicry miscegenation negritude orientalism settler-colony subaltern trans-culturation There are suggestions for further reading at the end of each entry and a comprehensive glossary with extensive cross-referencing. The bibliography of essential writings in post-colonial studies is in an easy-to-use A-Z format.

869 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: Autophagy is a cell biological process that is a central component of the integrated stress response and can be integrated with other cellular stress responses through parallel stimulation of autophagy and other stress responses by specific stress stimuli.

3,002 citations

Journal ArticleDOI
TL;DR: Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic.
Abstract: Rab GTPases control intracellular vesicle traffic by acting as regulatable switches that recruit effector molecules when in their GTP-bound form. The functional coupling between multiple Rab GTPases ensures the spatiotemporally coordinated regulation of vesicle traffic. Membrane trafficking between organelles by vesiculotubular carriers is fundamental to the existence of eukaryotic cells. Central in ensuring that cargoes are delivered to their correct destinations are the Rab GTPases, a large family of small GTPases that control membrane identity and vesicle budding, uncoating, motility and fusion through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases and motors. Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic. Functional impairments of Rab pathways are associated with diseases, such as immunodeficiencies, cancer and neurological disorders.

2,893 citations