scispace - formally typeset
Search or ask a question
Author

Gareth Leng

Bio: Gareth Leng is an academic researcher from University of Edinburgh. The author has contributed to research in topics: Oxytocin & Vasopressin. The author has an hindex of 60, co-authored 277 publications receiving 12452 citations. Previous affiliations of Gareth Leng include Agricultural and Food Research Council & University of Birmingham.


Papers
More filters
Journal ArticleDOI
TL;DR: The recently demonstrated ability of neuropeptides to prime vesicle stores for activity-dependent release could lead to a temporary functional reorganization of neuronal networks harbouring specific peptide receptors, providing a substrate for long-lasting effects.
Abstract: Neuropeptides that are released from dendrites, such as oxytocin and vasopressin, function as autocrine or paracrine signals at their site of origin, but can also act at distant brain targets to evoke long-lasting changes in behaviour. Oxytocin, for instance, has profound effects on social bonding that are exerted at sites that richly express oxytocin receptors, but which are innervated by few, if any, oxytocin-containing projections. How can a prolonged, diffuse signal have coherent behavioural consequences? The recently demonstrated ability of neuropeptides to prime vesicle stores for activity-dependent release could lead to a temporary functional reorganization of neuronal networks harbouring specific peptide receptors, providing a substrate for long-lasting effects.

838 citations

Journal ArticleDOI
TL;DR: Effects of intranasal oxytocin also need proper dose-response studies, and such studies need to include control subjects for peripheral effects, by administering Oxytocin peripherally and by blocking peripheral actions with antagonists.

492 citations

Journal ArticleDOI
TL;DR: It is concluded that "food addiction" is a misnomer because of the ambiguous connotation of a substance-related phenomenon, and is proposed the term "eating addiction" to underscore the behavioral addiction to eating.

402 citations

Journal ArticleDOI
04 Jul 2002-Nature
TL;DR: It is shown that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca2+ induce oxytoc in release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals.
Abstract: Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.

331 citations

Journal ArticleDOI
TL;DR: This review considers the rôle played by particular afferent pathways in the regulation of the activity of oxytocin and vasopressin cells.

307 citations


Cited by
More filters
Journal ArticleDOI
19 Oct 2000-Nature
TL;DR: It is proposed that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary, suggesting an involvement in regulation of energy balance.
Abstract: The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary

3,894 citations

Journal Article
TL;DR: Thaler and Sunstein this paper described a general explanation of and advocacy for libertarian paternalism, a term coined by the authors in earlier publications, as a general approach to how leaders, systems, organizations, and governments can nudge people to do the things the nudgers want and need done for the betterment of the nudgees, or of society.
Abstract: NUDGE: IMPROVING DECISIONS ABOUT HEALTH, WEALTH, AND HAPPINESS by Richard H. Thaler and Cass R. Sunstein Penguin Books, 2009, 312 pp, ISBN 978-0-14-311526-7This book is best described formally as a general explanation of and advocacy for libertarian paternalism, a term coined by the authors in earlier publications. Informally, it is about how leaders, systems, organizations, and governments can nudge people to do the things the nudgers want and need done for the betterment of the nudgees, or of society. It is paternalism in the sense that "it is legitimate for choice architects to try to influence people's behavior in order to make their lives longer, healthier, and better", (p. 5) It is libertarian in that "people should be free to do what they like - and to opt out of undesirable arrangements if they want to do so", (p. 5) The built-in possibility of opting out or making a different choice preserves freedom of choice even though people's behavior has been influenced by the nature of the presentation of the information or by the structure of the decisionmaking system. I had never heard of libertarian paternalism before reading this book, and I now find it fascinating.Written for a general audience, this book contains mostly social and behavioral science theory and models, but there is considerable discussion of structure and process that has roots in mathematical and quantitative modeling. One of the main applications of this social system is economic choice in investing, selecting and purchasing products and services, systems of taxes, banking (mortgages, borrowing, savings), and retirement systems. Other quantitative social choice systems discussed include environmental effects, health care plans, gambling, and organ donations. Softer issues that are also subject to a nudge-based approach are marriage, education, eating, drinking, smoking, influence, spread of information, and politics. There is something in this book for everyone.The basis for this libertarian paternalism concept is in the social theory called "science of choice", the study of the design and implementation of influence systems on various kinds of people. The terms Econs and Humans, are used to refer to people with either considerable or little rational decision-making talent, respectively. The various libertarian paternalism concepts and systems presented are tested and compared in light of these two types of people. Two foundational issues that this book has in common with another book, Network of Echoes: Imitation, Innovation and Invisible Leaders, that was also reviewed for this issue of the Journal are that 1 ) there are two modes of thinking (or components of the brain) - an automatic (intuitive) process and a reflective (rational) process and 2) the need for conformity and the desire for imitation are powerful forces in human behavior. …

3,435 citations

Journal ArticleDOI
11 Jan 2001-Nature
TL;DR: It is shown that ghrelin is involved in the hypothalamic regulation of energy homeostasis and probably has a function in growth regulation by stimulating feeding and release of growth hormone.
Abstract: Ghrelin is an acylated peptide that stimulates the release of growth hormone from the pituitary. Ghrelin-producing neurons are located in the hypothalamus, whereas ghrelin receptors are expressed in various regions of the brain, which is indicative of central-and as yet undefined-physiological functions. Here we show that ghrelin is involved in the hypothalamic regulation of energy homeostasis. Intracerebroventricular injections of ghrelin strongly stimulated feeding in rats and increased body weight gain. Ghrelin also increased feeding in rats that are genetically deficient in growth hormone. Anti-ghrelin immunoglobulin G robustly suppressed feeding. After intracerebroventricular ghrelin administration, Fos protein, a marker of neuronal activation, was found in regions of primary importance in the regulation of feeding, including neuropeptide Y6 (NPY) neurons and agouti-related protein (AGRP) neurons. Antibodies and antagonists of NPY and AGRP abolished ghrelin-induced feeding. Ghrelin augmented NPY gene expression and blocked leptin-induced feeding reduction, implying that there is a competitive interaction between ghrelin and leptin in feeding regulation. We conclude that ghrelin is a physiological mediator of feeding, and probably has a function in growth regulation by stimulating feeding and release of growth hormone.

3,400 citations

Journal ArticleDOI
TL;DR: The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by gh Relin derived from the stomach, which plays important roles for maintaining GH release and energy homeostasis in vertebrates.
Abstract: Small synthetic molecules called growth hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through the GHS-R, a G protein-coupled receptor whose ligand has only been discovered recently. Using a reverse pharmacology paradigm with a stable cell line expressing GHS-R, we purified an endogenous ligand for GHS-R from rat stomach and named it "ghrelin," after a word root ("ghre") in Proto-Indo-European languages meaning "grow." Ghrelin is a peptide hormone in which the third amino acid, usually a serine but in some species a threonine, is modified by a fatty acid; this modification is essential for ghrelin's activity. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. In addition, ghrelin stimulates appetite by acting on the hypothalamic arcuate nucleus, a region known to control food intake. Ghrelin is orexigenic; it is secreted from the stomach and circulates in the bloodstream under fasting conditions, indicating that it transmits a hunger signal from the periphery to the central nervous system. Taking into account all these activities, ghrelin plays important roles for maintaining GH release and energy homeostasis in vertebrates.

2,740 citations

Journal ArticleDOI
TL;DR: The regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood.
Abstract: The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via Gq proteins to phospholipase C-β. The high-affinity receptor state requires both Mg2+ and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has bee...

2,691 citations