scispace - formally typeset
Search or ask a question
Author

Garett E. Bingham

Bio: Garett E. Bingham is an academic researcher from East Tennessee State University. The author has contributed to research in topics: Squat & Eccentric. The author has an hindex of 6, co-authored 6 publications receiving 156 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this review is to summarize the magnitudes and methods of AEL application, the acute and chronic implications, the potential mechanisms by which AEL enhances acute and Chronic performance, and the limitations of current research and the potential for future study.
Abstract: Accentuated eccentric loading (AEL) prescribes eccentric load magnitude in excess of the concentric prescription using movements that require coupled eccentric and concentric actions, with minimal interruption to natural mechanics. This method has been theorized to potentiate concentric performance through higher eccentric loading and, thus, higher concentric force production. There is also evidence for favorable chronic adaptations, namely shifts to faster myosin heavy chain isoforms and changes in IIx-specific muscle cross-sectional area. However, research concerning the acute and chronic responses to AEL is inconclusive, likely due to inconsistencies in subjects, exercise selection, load prescription, and method of providing AEL. Therefore, the purpose of this review is to summarize: (1) the magnitudes and methods of AEL application; (2) the acute and chronic implications of AEL as a means to enhance force production; (3) the potential mechanisms by which AEL enhances acute and chronic performance; and (4) the limitations of current research and the potential for future study.

70 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the role of maximum strength and rate of force development in the production of MUSCULAR POWER is presented. But, the review is limited to two categories: MAXIMAL STRENGTH and RATE OF FORCE Development.
Abstract: THIS BRIEF REVIEW ENCOMPASSES THE ROLE OF MAXIMAL STRENGTH AND RATE OF FORCE DEVELOPMENT IN THE PRODUCTION OF MUSCULAR POWER. IT BEGINS WITH THE INVESTIGATION OF POWER OUTPUT AND ITS IMPORTANCE FOR SPORT. AFTER THIS BASIS FOR POWER PRODUCTION, THIS REVIEW EXAMINES BOTH MAXIMAL STRENGTH AND R

51 citations

Journal ArticleDOI
TL;DR: The results indicate overload is possible kinetically, phase-specific muscle activation responds differently to increased inertia and velocity has the potential to be used for load prescription in the inertial flywheel squat.
Abstract: The purposes of this investigation were to: (1) assess kinetic characteristics of overload, (2) examine eccentric and concentric muscle activations and (3) explore velocity measurement as a...

44 citations

Journal ArticleDOI
TL;DR: Overall, eccentric overload demonstrated efficacy as a means of increasing eccentric work and RFD, but not as a Means of potentiating concentric output.
Abstract: Wagle, JP, Cunanan, AJ, Carroll, KM, Sams, ML, Wetmore, A, Bingham, GE, Taber, CB, DeWeese, BH, Sato, K, Stuart, CA, and Stone, MH. Accentuated eccentric loading and cluster set configurations in the back squat: a kinetic and kinematic analysis. J Strength Cond Res XX(X): 000–000, 2018—This

21 citations

Journal ArticleDOI
21 Nov 2017
TL;DR: The results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred.
Abstract: The purpose of the current study was (1) to examine the differences between standing and lying measures of vastus lateralis (VL), muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) using ultrasonography; and (2) to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production-specifically peak force, rate of force development (RFD), impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34) agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF), as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p < 0.001), PA (p < 0.001), and CSA (p ≤ 0.05), with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression as well as how initial strength affects an athlete’s ability to improve their performance following various training methods.
Abstract: This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete’s training status and the dose–response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete’s training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete’s ability to improve their performance following various training methods.

370 citations

Journal ArticleDOI
TL;DR: It is suggested that periodized resistance training plans have a moderate effect on 1RM compared to non-periodized training plans, and longer periods of higher training frequency may be preferred.
Abstract: Periodization is a logical method of organizing training into sequential phases and cyclical time periods in order to increase the potential for achieving specific performance goals while minimizing the potential for overtraining. Periodized resistance training plans are proposed to be superior to non-periodized training plans for enhancing maximal strength. The primary aim of this study was to examine the previous literature comparing periodized resistance training plans to non-periodized resistance training plans and determine a quantitative estimate of effect on maximal strength. All studies included in the meta-analysis met the following inclusion criteria: (1) peer-reviewed publication; (2) published in English; (3) comparison of a periodized resistance training group to a non-periodized resistance training group; (4) maximal strength measured by 1-repetition maximum (1RM) squat, bench press, or leg press. Data were extracted and independently coded by two authors. Random-effects models were used to aggregate a mean effect size (ES), 95% confidence intervals (CIs) and potential moderators. The cumulative results of 81 effects gathered from 18 studies published between 1988 and 2015 indicated that the magnitude of improvement in 1RM following periodized resistance training was greater than non-periodized resistance training (ES = 0.43, 95% CI 0.27–0.58; P < 0.001). Periodization model (β = 0.51; P = 0.0010), training status (β = −0.59; P = 0.0305), study length (β = 0.03; P = 0.0067), and training frequency (β = 0.46; P = 0.0123) were associated with a change in 1RM. These results indicate that undulating programs were more favorable for strength gains. Improvements in 1RM were greater among untrained participants. Additionally, higher training frequency and longer study length were associated with larger improvements in 1RM. These results suggest that periodized resistance training plans have a moderate effect on 1RM compared to non-periodized training plans. Variation in training stimuli appears to be vital for increasing maximal strength, and longer periods of higher training frequency may be preferred.

112 citations

Journal ArticleDOI
TL;DR: The purpose of this review was to provide a physiological rationale for the use of eccentric resistance training and to provide an overview of the most commonly prescribed eccentric training methods.
Abstract: The purpose of this review was to provide a physiological rationale for the use of eccentric resistance training and to provide an overview of the most commonly prescribed eccentric training methods. Based on the existing literature, there is a strong physiological rationale for the incorporation of eccentric training into a training program for an individual seeking to maximize muscle size, strength, and power. Specific adaptations may include an increase in muscle cross-sectional area, force output, and fiber shortening velocities, all of which have the potential to benefit power production characteristics. Tempo eccentric training, flywheel inertial training, accentuated eccentric loading, and plyometric training are commonly implemented in applied contexts. These methods tend to involve different force absorption characteristics and thus, overload the muscle or musculotendinous unit in different ways during lengthening actions. For this reason, they may produce different magnitudes of improvement in hypertrophy, strength, and power. The constraints to which they are implemented can have a marked effect on the characteristics of force absorption and therefore, could affect the nature of the adaptive response. However, the versatility of the constraints when prescribing these methods mean that they can be effectively implemented to induce these adaptations within a variety of populations.

79 citations